相关习题
 0  360378  360386  360392  360396  360402  360404  360408  360414  360416  360422  360428  360432  360434  360438  360444  360446  360452  360456  360458  360462  360464  360468  360470  360472  360473  360474  360476  360477  360478  360480  360482  360486  360488  360492  360494  360498  360504  360506  360512  360516  360518  360522  360528  360534  360536  360542  360546  360548  360554  360558  360564  360572  366461 

科目: 来源: 题型:

【题目】如图,在直角坐标系中,已知直线y=-x+4与y轴交于A点,与x轴交于B点,C点坐标为(﹣2,0).

(1)求经过A,B,C三点的抛物线的解析式;

(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形ABOC.抛物线y=﹣x2+2x+3经过点ACA三点.

1)求AAC三点的坐标;

2)求平行四边形ABOC和平行四边形ABOC重叠部分COD的面积;

3)点M是第一象限内抛物线上的一动点,问点M在何处时,AMA的面积最大?最大面积是多少?并写出此时M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点QEF分别在BCABAC上(点E与点A、点B均不重合).

(1)当AE=8时,求EF的长;

(2)设AEx,矩形EFPQ的面积为y

yx的函数关系式;

x为何值时,y有最大值,最大值是多少?

(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求St的函数关系式,并写出t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:

第一步:点D绕点A顺时针旋转180°得到点D1

第二步:点D1绕点B顺时针旋转90°得到点D2

第三步:点D2绕点C顺时针旋转90°回到点D.

(1)请用圆规画出点D→D1→D2→D经过的路径;

(2)所画图形是什么对称图形;

(3)求所画图形的周长(结果保留π).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点OAPB的平分线上,OPA相切于点C

1)求证:直线PBO相切;

2PO的延长线与O交于点E.若O的半径为3PC=4.求弦CE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】下面是“作出弧AB所在的圆”的尺规作图过程.

已知:弧AB.

求作:弧AB所在的圆.

作法:如图,

(1)在弧AB上任取三个点D,C,E;

(2)连接DC,EC;

(3)分别作DC和EC的垂直平分线,两垂直平分线的交点为点O.

(4)以 O为圆心,OC长为半径作圆,所以O即为所求作的弧AB所在的圆.

请回答:该尺规作图的依据是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】结果如此巧合!

下面是小颖对一道题目的解答.

题目:如图,RtABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.

解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.

根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.

根据勾股定理,得(x+3)2+(x+4)2=(3+4)2

整理,得x2+7x=12.

所以SABC=ACBC

=(x+3)(x+4)

=(x2+7x+12)

=×(12+12)

=12.

小颖发现12恰好就是3×4,即△ABC的面积等于ADBD的积.这仅仅是巧合吗?

请你帮她完成下面的探索.

已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.

可以一般化吗?

(1)若∠C=90°,求证:△ABC的面积等于mn.

倒过来思考呢?

(2)若ACBC=2mn,求证∠C=90°.

改变一下条件……

(3)若∠C=60°,用m、n表示△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是一座古拱桥的截面图拱桥桥洞的上沿是抛物线形状当水面的宽度为10m桥洞与水面

的最大距离是5m

1经过讨论同学们得出三种建立平面直角坐标系的方案如下图

你选择的方案是_____填方案一方案二或方案三),B点坐标是______求出你所选方案中的抛物线的表达式

2因为上游水库泄洪水面宽度变为6m求水面上涨的高度

查看答案和解析>>

科目: 来源: 题型:

【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为

(1)求口袋中黄球的个数;

(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,

求两次摸 出都是红球的概率;

查看答案和解析>>

同步练习册答案