相关习题
 0  361047  361055  361061  361065  361071  361073  361077  361083  361085  361091  361097  361101  361103  361107  361113  361115  361121  361125  361127  361131  361133  361137  361139  361141  361142  361143  361145  361146  361147  361149  361151  361155  361157  361161  361163  361167  361173  361175  361181  361185  361187  361191  361197  361203  361205  361211  361215  361217  361223  361227  361233  361241  366461 

科目: 来源: 题型:

【题目】问题提出

1)如图①,在△ABC中,ABAC10BC12,点O是△ABC的外接圆的圆心,则OB的长为   

问题探究

2)如图②,已知矩形ABCDAB4AD6,点EAD的中点,以BC为直径作半圆O,点P为半圆O上一动点,求EP之间的最大距离;

问题解决

3)某地有一块如图③所示的果园,果园是由四边形ABCD和弦CB与其所对的劣弧场地组成的,果园主人现要从入口D上的一点P修建一条笔直的小路DP.已知ADBC,∠ADB45°BD120米,BC160米,过弦BC的中点EEFBC于点F,又测得EF40米.修建小路平均每米需要40元(小路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线yax2+ca≠0)与y轴交于点A,与x轴交于BC两点(点Cx轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一交点为E,其顶点为F

1)求ac的值;

2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】象棋是棋类益智游戏,中国象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.李凯和张萌利用象棋棋盘和棋子做游戏.李凯将四枚棋子反面朝上放在棋盘上,其中有两个、一个、一个,张萌随机从这四枚棋子中摸一枚棋子,记下正汉字,然后再从剩下的三枚棋子中随机摸一枚.

1)求张萌第一次摸到的棋子正面上的汉字是的概率;

2)游戏规定:若张萌两次摸到的棋子中有,则张萌胜;否则,李凯胜.请你用树状图或列表法求李凯胜的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】张琪和爸爸到曲江池遗址公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张琪继续前行5分钟后也原路返回,两人恰好同时到家张琪和爸爸在整个运动过程中离家的路点y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示

1)求爸爸返问时离家的路程y2(米)与运动时间x(分)之间的函数关系式;

2)张琪开始返回时与爸爸相距多少米?

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学的一个数学兴趣小组在本校学生中开展了主题为雾霾知多少的专题调查括动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A.非常了解B.比较了解C.基本了解D.不太了解四个等级,将所得数据进行整理后,绘制成如下两幅不完整的统计图表,请你结合图表中的信息解答下列问题

等级

A

B

C

D

频数

40

120

36

n

频率

0.2

m

0.18

0.02

1)表中m   n   

2)扇形统计图中,A部分所对应的扇形的圆心角是   °,所抽取学生对丁雾霾了解程度的众数是   

3)若该校共有学生1500人,请根据调查结果估计这些学生中比较了解人数约为多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形ABCD的边长为3,∠BAD60°,点EF在对角线AC上(点E在点F的左侧),且EF1,则DE+BF最小值为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一次函数y=﹣x+my2x+n的图象都经过A(﹣40),且与y轴分别交于BC两点,则ABC的面积为(  )

A.48B.36C.24D.18

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线和抛物线为正整数).

1)抛物线轴的交点______,顶点坐标______

2)当时,请解答下列问题.

①直接写出轴的交点______,顶点坐标______,请写出抛物线的一条相同的图象性质______

②当直线相交共有4个交点时,求的取值范围.

3)若直线)与抛物线,抛物线为正整数)共有4个交点,从左至右依次标记为点,点,点,点,当时,求出之间满足的关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:矩形中,,点是对角线上的一个动点,连接,以为边在的右侧作等边

1)①如图1,当点运动到与点重合时,记等边为等边,则点的距离是________

②如图2,当点运动到点落在上时,记等边为等边.则等边的边长________

2)如图3,当点运动到与点重合时,记等边为等边,过点于点,求的长;

3)①在上述变化过程中的点是否在同一直线上?请建立平面直角坐标系加以判断,并说明理由.

②点的位置随着动点在线段上的位置变化而变化,猜想关于所有点的位置的一个数学结论,试用一句话表述:______

查看答案和解析>>

科目: 来源: 题型:

【题目】今年某水果加工公司分两次采购了一批桃子,第一次费用为25万元,第二次费用为30万元.已知第一次采购时每吨桃子的价格比去年的平均价格上涨了0.1万元,第二次采购时每吨桃子的价格比去年的平均价格下降了0.1万元,第二次采购的数量是第一次采购数量的2倍.

1)试问去年每吨桃子的平均价格是多少万元?两次采购的总数量是多少吨?

2)该公司可将桃子加工成桃脯或桃汁,每天只能加工其中一种.若单独加工成桃脯,每天可加工3吨桃子,每吨可获利0.7万元;若单独加工成桃汁,每天可加工9吨桃子,每吨可获利0.2万元.为出口需要,所有采购的桃子必须在30天内加工完毕.

①根据该公司的生产能力,加工桃脯的时间不能超过多少天?

②在这次加工生产过程中,应将多少吨桃子加工成桃脯才能获取最大利润?最大利润为多少?

查看答案和解析>>

同步练习册答案