相关习题
 0  362200  362208  362214  362218  362224  362226  362230  362236  362238  362244  362250  362254  362256  362260  362266  362268  362274  362278  362280  362284  362286  362290  362292  362294  362295  362296  362298  362299  362300  362302  362304  362308  362310  362314  362316  362320  362326  362328  362334  362338  362340  362344  362350  362356  362358  362364  362368  362370  362376  362380  362386  362394  366461 

科目: 来源: 题型:

【题目】如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:

(1)图中a的值为   

(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为   度;

(3)此次比赛共有300名学生参加,若将“x80”的成绩记为“优秀”,则获得“优秀“的学生大约有   人:

(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtACB中,ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②BCD=25°,则∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,则AF=.其中正确的结论是______.(填写所有正确结论的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】同一个圆的内接正方形和正三角形的边心距的比为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:

①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.

其中正确的有(  )

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目: 来源: 题型:

【题目】在同一直角坐标系中,函数和函数(m是常数,且)的图象可能是( )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知在矩形ABCD中,AD=10cmAB=4cm,动点P从点A出发,以2cm/s的速度沿AD向终点D移动,设移动时间为(s) .连接PC,以PC为一边作正方形PCEF,连接DEDF

1)求正方形PCEF的面积(用含的代数式来表示,不要求化简),并求当正方形PCEF的面积为25 cm2的值;

2)设△DEF的面积为(cm2),求之间的函数关系式,并求当为何值时?△DEF的面积取得最小值,这个最小值是多少?

3)求当为何值时?△DEF为等腰三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知在RtABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点E,若DAC的中点,连结DE

1)求证:DE为⊙O的切线;

2)若,求⊙O的半径长;

3)在(2)的条件下,过点A作⊙O的另一条切线,切点为F,过点FFGBC,垂足为H,且交⊙OG点,连结AO CF于点P.求线段FG的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形AEHC是由三个全等矩形拼成的,AHBEBFDFDGCG分别交于点PQKMN,设△BPQ、△DKM、△CNH的面积依次为

1)求证:△BPQ∽△DKM∽△CNH

2)若,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了增强学生体质,丰富课余生活,决定开设以下体育课外活动项目:A.篮球,B.乒乓球,C.羽毛球,D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

1)这次被调查的学生共有   人,在扇形统计图中B区域的圆心角度数为

2)请你将条形统计图补充完整;

3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,学校决定从这四名同学中任选两名参加市乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

查看答案和解析>>

同步练习册答案