科目: 来源: 题型:
【题目】某电视台为了解本地区电视节目的收视情况,对部分市民开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了两幅不完整的统计图(如图所示),根据要求回答下列问题:
![]()
(1)本次问卷调查共调查了________名观众;图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________;
(2)补全图①中的条形统计图;
(3)现有最喜爱“新闻节目”(记为
),“体育节目”(记为
),“综艺节目”(记为
),“科普节目”(记为
)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“
”和“
”两位观众的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN
90°.
(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
①如图2,在旋转过程中(1)中的结论依然成立吗,若成立,请证明;若不成立,请说明理由;
②如图2,在旋转过程中,当∠DOM
15°时,连接EF,若正方形的边长为2,请求出线段EF的长;
③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD
3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD
m·BP时,请直接写出PE与PF的数量关系.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形
的三个顶点
、
、
.抛物线
过
、
两点.
![]()
(1)直接写出点
的坐标,并求出抛物线的解析式;
(2)动点
从点
出发.沿线段
向终点
运动,同时点
从点
出发,沿线段
向终点
运动.速度均为每秒1个单位长度,运动时间为
秒.过点
作
交
于点
.
①过点
作
于点
,交抛物线于点
.当
为何值时,线段
最长?
②连接
.在点
、
运动的过程中,判断有几个时刻使得
是等腰三角形?请直接写出相应的
值.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读材料:
在平面直角坐标系
中,点
到直线
的距离公式为
.
例如:求点
到直线
的距离.
解:由直线
知,
,
,
,
∴点
到直线
的距离为
.
根据以上材料,解决下列问题:
问题1:点
到直线
的距离为__________;
问题2:已知
是以点
为圆心,1为半径的圆,
与直线
相切,求实数
的值;
问题3:如图,设点
为问题2中
上的任意一点,点
、
为直线
上的两点,且
请求出
的最大值和最小值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm
![]()
(1)请判断DE与⊙O的位置关系,并说明理由;
(2)求图中阴影部分的面积(结果用π表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】用1块
型钢板可制成2块
型钢板和1块
型钢板;用1块
型钢板可制成1块
型钢板和3块
型钢板.现准备购买
、
型钢板共100块,并全部加工成
、
型钢板.要求
型钢板不少于120块,
型钢板不少于250块,设购买
型钢板
块(
为整数)
(1)求
、
型钢板的购买方案共有多少种?
(2)出售
型钢板每块利润为100元,
型钢板每块利润为120元.若将
、
型钢板全部出售,请你设计获利最大的购买方案,并求出最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】赤峰市克旗初中有3000名学生参加“爱我中华知识竞赛”的活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.请你根据不完整的表格,回答下列问题:
(1)补全频数分布表、频数分布直方图;
(2)若将得分转化为等级,规定
评为“
”,
评为“
”,
评为“
”,
评为“
”.这次全旗参加竞赛的学生中,有多少学生参赛成绩被评为“
”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩在哪一个等级的可能性大?请说明理由.
成绩 | 频数 | 频率 |
| 10 | |
| 16 | 0.08 |
| 0.2 | |
| 62 | |
72 | 0.36 |
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知△ABC中,∠ABC=90°.
(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)
①作线段AC的垂直平分线l,交AC于点O;
②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;
③连接DA、DC.
(2)判断四边形ABCD的形状,并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,抛物线y1=ax2﹣
x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,
),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.
![]()
(1)求抛物线y2的解析式;
(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com