科目: 来源: 题型:
【题目】甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:
(1)请你根据图中的数据填写下表:
姓名 | 平均数 | 众数 |
甲 | 7 | |
乙 | 6 |
(2)请通过计算方差,说明谁的成绩更稳定.
查看答案和解析>>
科目: 来源: 题型:
【题目】将两个等腰Rt△ADE,Rt△ABC(其中∠DAE=∠ABC=90°,AB=BC,AD=AE)如图放置在一起,点E在AB上,AC与DE交于点H,连接BH、CE,且∠BCE=15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tan∠BCD=;④,其中正确的结论是____________ (填写所有正确结论的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多________个.(用含n的代数式表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A. B.
C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等边三角形ABC和正方形DEFG按如图所示摆放,其中 D,E两点分别在AB,BC上,且BD=DE.若AB=12,DE=4,则△EFC的面积为( )
A.4B.8C.12D.16
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线经过点A(4,0)、B(1,0),交y轴于点C.
(1)求抛物线的解析式.
(2)点P是直线AC上方的抛物线上一点,过点P作于点H,求线段PH长度的最大值.
(3)Q为抛物线上的一个动点(不与点A、B、C重合),轴于点M,是否存在点Q,使得以点A、Q、M三点为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在矩形ABCD中,AB=6,BC=8,点E是边CD上的点,且CE=4,过点E作CD的垂线,并在垂线上截取EF=3,连接CF.将△CEF绕点C按顺时针方向旋转,记旋转角为a.
(1)问题发现
当a=0°时,AF= ,BE= ,= ;
(2)拓展探究
试判断:当0°≤a°<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△CEF旋转至A,E,F三点共线时,直接写出线段BE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点、是直线与反比例函数图象的两个交点,轴于点C,己知点D(0,1),连接AD、BD、BC,
(1)求反比例函数和直线AB的表达式;
(2)根据函数图象直接写出当时不等式的解集;
(3)设△ABC和△ABD的面积分别为、,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某茶具店购进了A、B两种不同的茶具,1套A种茶具和2套B种茶具共需250元;3套A种茶具和4套B种茶具共需600元.
(1)求A、B两种茶具每套的进价分别是多少元?
(2)由于茶具畅销,茶具店准备再购进A、B两种茶具共80套,但这次进货时,工厂对A种茶具每套进价提高了8%,而B种茶具每套按第一次进价的八折,若茶具店本次进货总钱数不超过6240元,则最多可进A种茶具几套?
(3)若销售一套A种茶具可获利30元,销售一套B种茶其可获利20元,在(2)的条件下,如何进货可使本次购进茶具获利最多?最多是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com