相关习题
 0  363176  363184  363190  363194  363200  363202  363206  363212  363214  363220  363226  363230  363232  363236  363242  363244  363250  363254  363256  363260  363262  363266  363268  363270  363271  363272  363274  363275  363276  363278  363280  363284  363286  363290  363292  363296  363302  363304  363310  363314  363316  363320  363326  363332  363334  363340  363344  363346  363352  363356  363362  363370  366461 

科目: 来源: 题型:

【题目】如图,已知点A是反比例函数y的图象在第一象限上的动点,连结AO并延长交另一分支于点B,以AB为边作等边ABC使点C落在第二象限,且边BCx轴于点D,若ACDABD的面积之比为12,则点C的坐标为__

查看答案和解析>>

科目: 来源: 题型:

【题目】若(xa)(x+5)=x2bx5,一元二次方程ax2+bx+k0的两个实数根x1x2满足x1x222x1x24,则k_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,边长为2的正方形ABCD中,AE平分∠DACAECD于点FCEAE,垂足为点EEGCD,垂足为点G,点H在边BC上,BH=DF,连接AHFHFHAC交于点M,以下结论:

FH=2BHACFHSACF=1;CE=AF=FGDG,其中正确结论的个数为(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】一个质地均匀的正方体骰子的六个面上分别刻有16的点数.将骰子抛掷两次,掷第一次,将朝上一面的点数记为,掷第二次,将朝上一面的点数记为,则点()落在直线上的概率为:

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:

根据上述信息完成下列问题:

(1)求这次抽取的样本的容量;

(2)请在图②中把条形统计图补充完整;

(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+1y轴于点A,交x轴正半轴于点B(4,0) ,与过A点的直线相交于另一点D(3,) ,过点DDCx轴,垂足为C

(1)求抛物线的表达式;

(2)点P在线段OC上(不与点OC重合),过PPNx轴,交直线ADM,交抛物线于点N,连接CM,求△PCM 面积的最大值;

(3)若P x 轴正半轴上的一动点,设OP 的长为t.是否存在t,使以点MCDN 为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在锐角ABC中,AB=4BC=5,∠ACB=45°,将ABC绕点B按逆时针方向旋转,得到A1BC1

1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;

2)如图2,连接AA1CC1.若ABA1的面积为4,求CBC1的面积;

3)如图3,点E为线段AB中点,点P是线段AC上的动点,在ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40kmB处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距kmC处.

(1)求该轮船航行的速度(保留精确结果);

(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,E是⊙O上一点,CAB的延长线上,ADCECE的延长线于点D,且AE平分∠DAC

1)求证:CD是⊙O的切线;

2)若AB6,∠ABE60°,求AD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解本校学生平均每天的体育活动时间情况,随机抽取部分学生进行问卷调查,并将调查结果人数分为ABCD四个等级设活动时间为t(小时),At1B1≤t1.5C1.5≤t2Dt≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.

请你根据图中信息解答下列问题:

1)该校共调查了多少名学生;

2)将条形统计图补充完整;

3)求出表示A等级的扇形圆心角的度数;

4)在此次问卷调查中,甲班有2人平均每天大课间活动时间不足1小时,乙班有3人平均每天大课间活动时间不足1小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.

查看答案和解析>>

同步练习册答案