相关习题
 0  363275  363283  363289  363293  363299  363301  363305  363311  363313  363319  363325  363329  363331  363335  363341  363343  363349  363353  363355  363359  363361  363365  363367  363369  363370  363371  363373  363374  363375  363377  363379  363383  363385  363389  363391  363395  363401  363403  363409  363413  363415  363419  363425  363431  363433  363439  363443  363445  363451  363455  363461  363469  366461 

科目: 来源: 题型:

【题目】如图,矩形纸片ABCD中,GF分别为ADBC的中点,将纸片折叠,使D点落在GF上,得到HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AFEF,已知HE=HF,下列结论:①△MEH为等边三角形;②AEEF③△PHE∽△HAE ,其中正确的结论是(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,如果点A的坐标为(10),那么点B2019的坐标为(  )

A. 11B. C. D. (﹣11

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知直线与抛物线相交于AB两点,且点A1,-4)为抛物线的顶点,点Bx轴上。

1)求抛物线的解析式;

2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;

3)若点Qy轴上一点,且△ABQ为直角三角形,求点Q的坐标。

查看答案和解析>>

科目: 来源: 题型:

【题目】等腰RtACB,∠ACB90°,ACBC,点AC分别在x轴、y轴的正半轴上.

1)如图1,求证:∠BCO=∠CAO

2)如图2,若OA5OC2,求B点的坐标

3)如图3,点C03),QA两点均在x轴上,且SCQA18.分别以ACCQ为腰在第一、第二象限作等腰RtCAN、等腰RtQCM,连接MNy轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF=45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)设AEm

①△AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

②请直接写出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目: 来源: 题型:

【题目】小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800/分的速度匀速从乙地到甲地,两人距离乙地的路程y()与小张出发后的时间x()之间的函数图象如图所示.

(1)求小张骑自行车的速度;

(2)求小张停留后再出发时yx之间的函数表达式;

(3)求小张与小李相遇时x的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从 2018 9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了手机伴我健康行主题活动,他们随机抽取部分学生进行使用手机目的每周使用手机的时间的问卷调查,并绘制成如图①,②的 统计图,已知查资料的人数是 40人.请你根据以上信息解答下列问题:

(1)在扇形统计图中,玩游戏对应的百分比为______,圆心角度数是______度;

(2)补全条形统计图;

(3)该校共有学生2100人,估计每周使用手机时间在2 小时以上(不含2小时)的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,ABAC,∠A36°.

1)用尺规作图作∠ABC的角平分线,交AC于点D;(保留作图痕迹,不写作法).

2)求证:△BCD是等腰三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着无人机的应用范围日益广泛,无人机已走进寻常百姓家,如图,小明在我市体训基地试飞无人机.为测量无人机飞行的高度AB,小明在C点处测得∠ACB45°,向前走5米,到达D点处测得∠ADB40°.求无人机飞行的高度AB.(参考数据:1.4sin40°≈0.6cos40°≈0.6tan40°≈0.8.)

查看答案和解析>>

科目: 来源: 题型:

【题目】小方与小辉在玩军棋游戏,他们定义了一种新的规则,用军棋中的工兵连长地雷比较大小,共有6个棋子,分别为1工兵2连长3地雷游戏规则如下:①游戏时,将棋反面朝上,两人随机各摸一个棋子进行比赛,先摸者摸出的棋不放回;②工兵地雷地雷连长连长工兵;③相同棋子不分胜负.

1)若小方先摸,则小方摸到排长的事件是 ;若小方先摸到了连长,小辉在剩余的5个棋子中随机摸一个,则这一轮中小方胜小辉的概率为

2)如果先拿走一个连长,在剩余的5个棋子中小方先摸一个棋子,然后小辉在剩余的4个棋子中随机摸一个,求这一轮中小方获胜的概率

查看答案和解析>>

同步练习册答案