科目: 来源: 题型:
【题目】某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).
(1)求y与x之间的函数关系式,自变量x的取值范围;
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,AM为⊙O的切线,A为切点.过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.
(1)求∠AOB的度数;
(2)当⊙O的半径为4cm时,求CD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解某校九年级学生体育测试成绩情况,随机抽取九年级部分学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图,请你结合图中所给信息解答下列问题:
(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
(1)求出A级学生的人数占所抽取总人数的百分比;
(2)求出扇形统计图中C级所在的扇形圆心角的度数;
(3)所抽取学生体育测试成绩的中位数落在 等级内;
(4)若该校九年级共有500名学生,请你估计这次测试中C级和D级的学生共有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=2.
(1)试在图中画出将△ABC以B为旋转中心,沿顺时针方向旋转90°后的图形△A1BC1;
(2)若点B的坐标为(-1,-4),点C的坐标为(-3,-4),试在图中画出直角坐标系,并写出点A的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;②b>a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的个数有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)( )
A. 16 B. 24-4π C. 32-4π D. 32-8π
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).
(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
(3)在题(2)的条件下,是否存在某一时刻,使得△OMN的面积与OABC的面积之比为3:4?如果存在,请求出t的取值;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE和AF数量关系_____.
(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.
(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABD中,∠ABD=90°,E为AD的中点,AD∥BC,BE∥CD.
(1)求证:四边形BCDE是菱形;
(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com