科目: 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c经过点B(0,3)和点A(3,0).
(1)求抛物线的函数表达式和直线的函数表达式;
(2)若点P是抛物线落在第一象限,连接PA,PB,求△PAB的面积S的最大值及此时点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0).
(1)求该抛物线的解析式及顶点M的坐标;
(2)求△EMF与△BNF的面积之比.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCO为矩形,点A在x轴上,点C在y轴上,且点B的坐标为(-1,2),将此矩形绕点O顺时针旋转90°得矩形DEFO,抛物线y=-x2+bx+c过B,E两点.
(1)求此抛物线的函数关系式;
(2)将矩形ABCO向上平移,并且使此抛物线平分线段BC,求平移距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,用6米的铝合金型材做个如图所示的“日”字形矩形窗框,应做成长,宽各多少米时,才能使做成的矩形窗框透光面积S(平方米)最大,最大透光面积是多少?设矩形窗框的宽为x 米(铝合金型材宽度不计).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点A(m,5),B(n,2)是抛物线C1:上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的阴影部分面积为9,则抛物线C2的解析式是______________________________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:
①△ABG≌△AFG;②BG=GC;③AG∥CF;④.
其中正确结论的个数是( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目: 来源: 题型:
【题目】(观察发现):(1)如图1,四边形ABCD和四边形AEFG都是正方形,且点E在边AB上,连接DE和BG,猜想线段DE与BG的数量关系和位置关系.(只要求写出结论,不必说出理由)
(深入探究):(2)如图2,将图1中正方形AEFG绕点A逆时针旋转一定的角度,其他条件与观察发现中的条件相同,观察发现中的结论是否还成立?请根据图2加以说明.
(拓展应用):(3)如图3,直线l上有两个动点A、B,直线l外有一点动点Q,连接QA,QB,以线段AB为边在l的另一侧作正方形ABCD,连接QD.随着动点A、B的移动,线段QD的长也会发生变化,若QA,QB长分别为3,6保持不变,在变化过程中,线段QD的长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某品牌的饮水机的运作程序:开机后,20℃的水经过热交换器吸收热能,以每分钟上升6℃的速度加热到80℃,再进入开水器,以每分钟上升10℃的速度从80℃加热到100℃,停止加热,水温下降,此时水温与开机后用时成反比例关系,直至水温降至20℃,开机后进入此程序的整个过程中,水温y(℃)与开机后用时x(min)之间的函数图象如图所示,求在这个过程中:
(1)水温第一次达到80℃的时间;
(2)经过热交换器过程中,y关于x的函数表达式与水温下降过程中,y关于x的函数表达式;
(3)水温不低于20℃且不超过50℃的时间段.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求PD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com