科目: 来源: 题型:
【题目】如图,菱形ABCD,∠A=60°,AB=6,点E,F分别是AB,BC边上沿某一方向运动的点,且DE=DF,当点E从A运动到B时,线段EF的中点O运动的路程为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1是一扇旋转门,它由一个圆柱形空间的三片旋转翼组成,三片旋转翼将圆柱形空间等分为三个扇形空间,AB与CD处为出入口,在旋转过程中,当某一片旋转翼的一端与点B重合时,另两片中的一片旋转翼的一端与点D重合;继续旋转,当某一片旋转翼的一端与点A重合时,另两片中的一片旋转翼的一端则与点C重合。图2是从顶部俯视的示意图,点O为圆心,若圆O的直径为3米,且旋转门出入口的宽度相等,则该旋转门出入口的宽度为_____米.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(-4,0),点B(0,-5),点C(m,0)(m>0),过点A作直线BC的垂线交y轴于点D,则随着m值的增大,经过A,D,C三点的抛物线的开口大小的变化情况是( )
A.保持不变B.逐渐变大C.逐渐变小D.时大时小
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当=时,DE的长为( )
A. 2 B. C. D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于 DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是( )
A. CF=FG B. AF=AG C. AF=CF D. AG=FG
查看答案和解析>>
科目: 来源: 题型:
【题目】对于某一函数给出如下定义:对于任意实数,当自变量时,函数关于的函数图象为,将沿直线翻折后得到的函数图象为,函数的图象由和两部分共同组成,则函数为原函数的“对折函数”,如函数()的对折函数为.
(1)求函数()的对折函数;
(2)若点在函数()的对折函数的图象上,求的值;
(3)当函数()的对折函数与轴有不同的交点个数时,直接写出的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A在点B左侧),与y轴交于点C.
(1)利用直尺和圆规,作出抛物线y=x2+mx+n的对称轴(尺规作图,保留作图痕迹,不写作法);
(2)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;
(3)在(2)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了46米木栏.
(1)若a=26,所围成的矩形菜园的面积为280平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】阿波罗尼奥斯(Apollonius of Perga,约公元前262-190年),古希腊数学家,与欧几里得,阿基米德齐名,他的著作《圆锥曲线论》是古代世界光辉的科学成果.
材料:《圆锥曲线论》里面对抛物线的定义:平面内一个动点到一个定点与一条定直线的距离之比等于1,或者说:平面内一动点到一定点与一条直线的距离相等的轨迹就是抛物线.
问题:已知点,,直线,连接,若点到直线的距离与的长相等,请求出与的关系式.
解:如图,∵,,
∴
∵,直线,
∴点到直线的距离为
∵点到直线的距离与的长相等,
∴,
平方化简得,.
若将上述问题中点坐标改为,直线变为,按照问题解题思路,试求出与的关系式,并在平面直角坐标系中利用描点法画出其图象,你能发现什么?
查看答案和解析>>
科目: 来源: 题型:
【题目】密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com