相关习题
 0  363816  363824  363830  363834  363840  363842  363846  363852  363854  363860  363866  363870  363872  363876  363882  363884  363890  363894  363896  363900  363902  363906  363908  363910  363911  363912  363914  363915  363916  363918  363920  363924  363926  363930  363932  363936  363942  363944  363950  363954  363956  363960  363966  363972  363974  363980  363984  363986  363992  363996  364002  364010  366461 

科目: 来源: 题型:

【题目】如图,ABC是边长为4的正三角形,以AB边作正方形ABDE,点P和点Q分别是线段AC和线段BC上的中点,连接AQBP相交于点M,则点MDE的距离是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知ABC中,其最小的内角∠C=24°,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,则∠ABC=_____

查看答案和解析>>

科目: 来源: 题型:

【题目】合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在2030之间(包括2030),且四人间的数量是双人间的5.

(1)2015年学校寝室数为64,2017年建成后寝室数为121,20152017年的平均增长率;

(2)若建成后的寝室可供600人住宿,求单人间的数量;

(3)若该校今年建造三类不同的寝室的总数为180,则该校的寝室建成后最多可供多少师生住宿?

查看答案和解析>>

科目: 来源: 题型:

【题目】如果三角形的两个内角αβ满足2α+β=90°,那么我们称这样的三角形为准互余三角形”.

(1)若ABC准互余三角形”,C>90°,A=60°,则∠B=   °;

(2)如图①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明ABD准互余三角形.试问在边BC上是否存在点E(异于点D),使得ABE也是准互余三角形?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC准互余三角形,求对角线AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点AB在双曲线y x0)上,BCx轴交于点D.若点A的坐标为(24),则点D的坐标为(  )

A. 0B.0C.0D.0

查看答案和解析>>

科目: 来源: 题型:

【题目】四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为(  )

A.1B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)直接写出C点的坐标;

(2)求抛物线的解析式;

(3)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB是⊙O上的点,C是⊙O上的点,点DAB的延长线上,∠BCD=BAC.

(1)求证:CD是⊙O的切线;

(2)若∠D=30°,BD=2,求图中阴影部分的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).

(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1

(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2

(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)

查看答案和解析>>

科目: 来源: 题型:

【题目】今年某市为创评全国文明城市称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.

抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.

(1)该班男生小刚被抽中 事件,小悦被抽中 事件(不可能必然随机”);第一次抽取卡片小悦被抽中的概率为

(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小惠被抽中的概率.

查看答案和解析>>

同步练习册答案