科目: 来源: 题型:
【题目】如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,过点E作EF∥BC交直线AB于点F,连接CF.
(1)如图1,点D在BC上,AB与DE交于点G,连接BE.求证:四边形DCFE是平行四边形;
(2)如图2,点D在BC的延长线上,若四边形CDEF是矩形,AC=7,BC=4,求AE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某建设工地一个工程有大量的沙石需要运输.建设公司车队有载重量为8吨和10吨的卡车共14辆,全部车辆一次能运输128吨沙石.
(1)求建设公司车队载重量为8吨和10吨的卡车各有多少辆?
(2)随着工程的进展,车队需要一次运输沙石超过190吨,为了完成任务,准备新增购这两种卡车共7辆,车队最多新购买载重量为8吨的卡车多少辆?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知△ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE⊥AB,交AB的延长线于点E.
(1)求证:CB平分∠ACE;
(2)若BE=,CE=2,求⊙O的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.
(1)从口袋中随机取出一个球(不放回),接着再取出一个球,请用树形图或列表的方法求取出的两个球一个是红色球,一个是黄色球的概率;
(2)小明往该口袋中又放入m个红色球和(m+2)个黄色球,再从口袋中随机取出一个球,这个球是黄色球的概率为,求m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知△ABC的三个顶点的坐标分别为A(3,3)、B(﹣1,0)、C(4,0).
(1)经过平移,可使△ABC的顶点A与坐标原点O重合,则点C的对应点C1的坐标为 ;(不用画图)
(2)在图中画出将△ABC绕点B逆时针旋转90°得到的△A′BC′;
(3)以点A为位似中心放大△ABC,得到△AB2C2,使S△ABC:S=1:4,在图中画出△AB2C2.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点E.
(1)求抛物线的解析式;
(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.
(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD的边AB上取一点E,连接CE,将△BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE=2,则△CDF的面积是( )
A.1B.3C.6D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为( )
A.y=B.y=C.y=D.y=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com