科目: 来源: 题型:
【题目】观察下列图形:
它们是按一定规律排列的,依照此规律,第5个图形中的五角星的个数为___,第n个图形中的五角星(n为正整数)个数为____(用含n的代数式表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为2,则a的值是( )
A. ﹣2B. ﹣2+C. ﹣2﹣D. ﹣2﹣
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+4交y轴于点A,并经过B(4,4)和C(6,0)两点,点D的坐标为(4,0),连接AD,BC,点F从点O出发,以每秒1个单位长度的速度沿线段OC方向运动,到达点C后停止运动:点M同时从点D出发以每秒1个单位长度的速度沿x轴正方向运动,当点F停止时点M也停止运动.设点F的运动时间为t秒,过点F作AB的垂线EF交直线AB于点E,交AD于点H.
(1)求抛物线的解析式;
(2)以线段EH为斜边向右作等腰直角△EHG,当点G落在第一象限内的抛物线上时,求出t的值;
(3)设△EFM与四边形ADCB重合时的面积为S,请直接写出S与t的函数关系式与相应的自变量t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF。
(1)求证:AE是⊙O的切线;
(2)若,AE=8,求⊙O的半径;
(3)在(2)条件下,求BF的长。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).
查看答案和解析>>
科目: 来源: 题型:
【题目】某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数(利润=售价﹣制造成本)
(1)写出每月的利润(万元)与销售单价(元)之间的函数关系式;
(2)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
查看答案和解析>>
科目: 来源: 题型:
【题目】国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t<1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:
(1)此次抽查的学生数为 人,并补全条形统计图;
(2)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是 ;
(3)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有 人.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则:①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣l<x<3,其中正确的是( )
A.①②④B.②④C.①④D.②③
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:一组邻边相等且对角互补的四边形叫做“邻等对补四边形”
如图1,四边形ABCD中,AB=BC,∠B+∠D=180°(或∠A+∠C=180°),则四边形ABCD叫做“邻等对补四边形”.
概念理解
(1)在以下四种图形中:①平行四边形,②菱形,③矩形,④正方形;一定是“邻等对补四边形”的是 ;(填写序号)
(2)如图2,点A、B、C是网格中格点,请找出两个格点P1,P2,连接P1A、P1C,P2A、P2C画出四边形P1ABC,P2ABC,使四边形P1ABC,P2ABC均为“邻等对补四边形”.
性质证明
(3)如图1,四边形ABCD中,AB=BC,∠A+∠C=180°,连接BD,求证:BD平分∠ADC.
知识运用
(4)如图3,在“邻等对补四边形”ABCD中,满足AB=AD,AB+BC=6,∠ADC=60°时,若2≤BC<3,求四边形ABCD的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com