相关习题
 0  364304  364312  364318  364322  364328  364330  364334  364340  364342  364348  364354  364358  364360  364364  364370  364372  364378  364382  364384  364388  364390  364394  364396  364398  364399  364400  364402  364403  364404  364406  364408  364412  364414  364418  364420  364424  364430  364432  364438  364442  364444  364448  364454  364460  364462  364468  364472  364474  364480  364484  364490  364498  366461 

科目: 来源: 题型:

【题目】如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.

(1)求AD的长.

(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当DPF为等腰三角形时,求AP的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2+bx+c经过A(﹣6,0)、B(2,0)、C(0,6)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与AD重合),过点Py轴的垂线,垂足为点E,连接AE

(1)求抛物线的函数解析式,并写出顶点D的坐标;

(2)如果点P的坐标为(xy),PAE的面积为S,求Sx之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;

(3)过点P(﹣3,m)作x轴的垂线,垂足为点F,连接EF,把PEF沿直线EF折叠,点P的对应点为点P,求出P的坐标.(直接写出结果)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC内接于OB=600CDO的直径,点PCD延长线上的一点,且AP=AC

1)求证:PAO的切线;

2)若PD=,求O的直径.

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图的方格中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1△OAB是关于点P为位似中心的位似图形.

(1)在图中标出位似中心P的位置,并写出点P的坐标及△O1A1B1△OAB的相似比;

(2)以原点O为位似中心,在y轴的左侧画出△OAB的一个位似△OA2B2,使它与△OAB的位似比为2:1,并写出点B的对应点B2的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=x+cx轴交于点A30),与y轴交于点B,抛物线y=x2+bx+c经过点ABMm0)为x轴上一动点,点M在线段OA上运动且不与OA重合,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点PN

1)求点B的坐标和抛物线的解析式;

2)在运动过程中,若点P为线段MN的中点,求m的值;

3)在运动过程中,若以BPN为顶点的三角形与△APM相似,求点M的坐标;

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数y=x+b和反比例函数y=k≠0)交于点A41).

1)求反比例函数和一次函数的解析式;

2)求△AOB的面积;

3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一个不透明的口袋里装有若干个除颜色外其余均相同的红、黄、蓝三种颜色的小球,其中红球2个,篮球1个,若从中任意摸出一个球,摸到球是红球的概率为

1)求袋中黄球的个数;

2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,以ABC的各边,在边BC的同侧分别作三个正方形ABDIBCFEACHG

1)求证:BDEBAC

2)求证:四边形ADEG是平行四边形.

3)直接回答下面两个问题,不必证明:

ABC满足条件_____________________时,四边形ADEG是矩形.

ABC满足条件_____________________时,四边形ADEG是正方形?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某幢大楼顶部有广告牌CD,小宇身高MA1.89,他站在立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进15,站在点B处测得广告牌顶端点C的仰角为45°.

(1)求这幢大楼的高DH;

(2)求这块广告牌CD的高度.(≈1.732,计算结果保留一位小数)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图(1),在平行四边形ABCD中,AB=20 AD=30,∠ABC=60° ,点P从点D出发沿DC向点C匀速运动,速度为每秒3个单位长度; 同时,点Q从点B出发沿BA向点A匀速运动,速度为每秒2个单位长度.当点P停止运动时,点Q也随之停止运动. 过点PPMADAD于点M ,连接PQQM ,设运动的时间为t秒(.

1)当QPPM时,求t的值;

2)如图(2)连接MC,是否存在t ,使得PQM的面积是平行四边形ABCD面积的 若存在,求出对应的t值;若不存在, 请说明理由;

3)如图(3),过点MMN//AB交于点N,是否 存在t的值, 使得点P在线段MN的垂直平分线上? 若存在, 求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案