科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3(a≠0)与x轴交于A,B两点(点A在点B左侧).
(1)求抛物线的对称轴;
(2)若AB=4,求该抛物线的解析式;
(3)若AB≤4,直接写出a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的.连接BE、CF相交于点D.
(1)求证:BE=CF.
(2)当四边形ACDE为菱形时,求BD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.
(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?
(2)若墙体长度为20米,问长方形面积最大是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数的图像与坐标轴交于点A(1, 0)和点C.经过点A的直线与二次函数图像交于另一点B,点B与点C关于二次函数图像的对称轴对称.
(1)求一次函数表达式;
(2)点P在二次函数图像的对称轴上,当△ACP的周长最小时,请求出点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1)、B(-4,-3)、C(-4,-1).
(1)将△ABC向右平移三个单位后得到则_________;
(2)画出△ABC关于原点O中心对称的图形.
(3)将△ABC绕原点A按顺时针方向旋转90°后得到画出则的坐标为_________,的坐标为_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系中,C(0,4),A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当点A在x轴上运动时,OB+BC的最小值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y=3x2+bx+c与直线y=﹣1只有一个公共点M,与平行于x轴的直线l交此抛物线A,B两点若AB=4,则点M到直线l的距离为( )
A.11B.12C.D.13
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线经过E(4,5),F(2,-3),G(-2,5),H(1,-4)四个点,选取其中两点用待定系数法能求出该抛物线解析式的是( )
A.E,FB.F,GC.F,HD.E,G
查看答案和解析>>
科目: 来源: 题型:
【题目】若一次函数y=kx+m的图象经过二次函数y=ax2+bx+c的顶点,我们则称这两个函数为“丘比特函数组”
(1)请判断一次函数y=﹣3x+5和二次函数y=x2﹣4x+5是否为“丘比特函数组”,并说明理由.
(2)若一次函数y=x+2和二次函数y=ax2+bx+c为“丘比特函数组”,已知二次函数y=ax2+bx+c顶点在二次函数y=2x2﹣3x﹣4图象上并且二次函数y=ax2+bx+c经过一次函数y=x+2与y轴的交点,求二次函数y=ax2+bx+c的解析式;
(3)当﹣3≤x≤﹣1时,二次函数y=x2﹣2x﹣4的最小值为a,若“丘比特函数组”中的一次函数y=2x+3和二次函数y=ax2+bx+c(b、c为参数)相交于PQ两点请问PQ的长度为定值吗?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】有两个内角分别是它们对角的一半的四边形叫做半对角四边形
(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C的度数之和;
(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;
(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG=2时,求⊙O的直径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com