科目: 来源: 题型:
【题目】已知关于x的一元二次方程(k﹣1)x2+(2k+1)x+k=0.
(1)依据k的取值讨论方程解的情况.
(2)若方程有一根为x=﹣2,求k的值及方程的另一根.
查看答案和解析>>
科目: 来源: 题型:
【题目】在所给格点图中,画出△ABC作下列变换后的三角形,并写出所得到的三角形三个顶点的坐标.
(1)沿y轴正方向平移2个单位后得到△A1B1C1;
(2)关于y轴对称后得到△A2B2C2.
(3)以点B为位似中心,放大到2倍后得到△A3B3C3.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=8,AC=16,点P从点A出发,沿AB方向以每秒2个长度单位的速度向点B运动:同时点Q从点C出发,沿CA方向以每秒3个长度单位的速度向点A运动,其中一点到达终点,则另一点也随之停止运动,当△ABC与以A、P、Q为顶点的三角形相似时,运动时间为______秒.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一面利用墙,用篱笆围成的矩形花圃ABCD的面积为Sm2,与墙垂直的AB边长为xm.若墙可利用的最大长度为13m,篱笆总长为24m,花圃中间用一道篱笆隔成两个小矩形.
(1)求S与x之间的函数表达式;
(2)当围成的花圃的面积为45m2时,求AB的长;
(3)当x为何值时,围成的花圃ABCD的面积最大,最大是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,反比例函数的图象与一次函数的图象交于点、点.
(1)求一次函数和反比例函数的解析式;
(2)求的面积;
(3)直接写出一次函数值大于反比例函数值的自变量的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)
(参考数据:sin43° =0.6820, cos43° =0.7314, tan43° =0.9325
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(﹣1,0),(3,0),且点P1(x1,y1)、P2(x2,y2)在此抛物线上.对于下列结论:①abc>0;②b2﹣4ac>0;③当x1<x2<0时,y1>y2;④当﹣1<x<3时,y<0.其中正确的是_____(填序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.
(1)求抛物线和直线AC的解析式;
(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;
(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com