科目: 来源: 题型:
【题目】如图,在等边△ABC中,点E,F分别是边AB,BC上的动点(不与端点重合),且始终保持AE=BF,连接AF,CE相交于点P过点A作直线m∥BC,过点C作直线n∥AB,直线m,n相交于点D,连接PD交AC于点G,在点E,F的运动过程中,若=,则的值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形OABC中,OA=4,AB=3,点D在边BC上,且CD=3DB,点E是边OA上一点,连接DE,将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,则OE的长为( )
A.B.C.D.1
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,若抛物线的顶点在抛物线上,抛物线的顶点在抛物线上,(点与点不重合),我们把这样的两条抛物线和,互称为“友好”抛物线.
(1)一条抛物线的“友好”抛物线有 条;
(2)如图②,已知抛物线与轴相交于点,点关于抛物线的对称轴的对称点为点,求以点为顶点的的“友好”抛物线的表达式;
(3)若抛物线的“友好”抛物线的解析式为,请直接写出与的关系式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在中,,,.点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.作于,连接,设运动时间为,解答下列问题:
(1)设的面积为,求与之间的函数关系式,的最大值是 ;
(2)当的值为 时,是等腰三角形.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校在基地参加社会活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留有一个宽为3米的出入口,如图所示.如何设计才能使园地的面积最大?下面是两位同学争议的情境:小军:把它围成一个正方形,这样的面积一定最大.小英:不对啦!面积最大的不是正方形.请根据上面信息,解决问题:
(1)设米().
① 米(用含的代数式表示);
②的取值范围是 ;
(2)请你判断谁的说法正确,为什么?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,双曲线与直线相交于点(点在第一象限),其横坐标为2.
(1)求的值;
(2)若两个图像在第三象限的交点为,则点的坐标为 ;
(3)点为此反比例函数图像上一点,其纵坐标为3,过点作,交轴于点,直接写出线段的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价元,回答下列问题:
(1)该商场每天售出衬衫 件(用含的代数式表示);
(2)求的值为多少时,商场平均每天获利1050元?
(3)该商场平均每天获利 (填“能”或“不能”)达到1250元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图, 已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点 .
(1)求抛物线的解析式和A、B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;
(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.
(1)填空:若∠BAF=18°,则∠DAG=______°.
(2)证明:△AFC∽△AGD;
(3)若=,请求出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com