科目: 来源: 题型:
【题目】阅读下面的材料:
如果函数 y=f(x)满足:对于自变量 x 的取值范围内的任意 x1,x2,
(1)若 x1<x2,都有 f(x1)<f(x2),则称 f(x)是增函数;
(2)若 x1<x2,都有 f(x1)>f(x2),则称 f(x)是减函数.
例题:证明函数f(x)= (x>0)是减函数.
证明:设 0<x1<x2,
f(x1)﹣f(x2)=.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴>0.即 f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函数 f(x)= (x>0)是减函数.
根据以上材料,解答下面的问题:
已知函数.
f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=.
(1)计算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函数是 函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.
(1)求证:四边形OCED为矩形;
(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读以下材料,并按要求完成相应的任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数、公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和 r 分别为外接圆和内切圆的半径,O 和 I 分别为其外心和内心,则OI R2Rr .
下面是该定理的证明过程(借助了第(2)问的结论):
延长AI 交⊙O 于点 D,过点 I 作⊙O 的直径 MN,连接 DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI.∴,∴ IA ID IM IN ①
如图②,在图 1(隐去 MD,AN)的基础上作⊙O 的直径DE,连接BE,BD,BI,IF
∵DE 是⊙O 的直径,∴∠DBE=90°.
∵⊙I 与 AB 相切于点 F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB.
∴,∴②,
由(2)知:,
∴
又∵,
∴ 2Rr(R d )(R d ) ,
∴ R d 2Rr
∴ d R 2Rr
任务:(1)观察发现: IM R d , IN (用含R,d 的代数式表示);
(2)请判断 BD 和 ID 的数量关系,并说明理由.(请利用图 1 证明)
(3)应用:若△ABC 的外接圆的半径为 6cm,内切圆的半径为 2cm,则△ABC 的外心与内心之间的距离为 cm.
查看答案和解析>>
科目: 来源: 题型:
【题目】去年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从 4 名女班干部(小悦、小文、小雅和小宇)中通过抽签方式确定 2 名女生去参加.抽签规则:将 4 名女班干部姓名分别写在 4 张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的 3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小安被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小文被抽中”的概率为 ;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小雅被抽中”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).
(1)求抛物线的解析式;
(2)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S△PAD=3,若在x轴上存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;
(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果一个三位正整数A与另一个三位正整数B相加得到三位数C,C的三个数位上的数字都相同,我们就称三位正整数A和三位正整数B互为“影子数”如:191+253=444,191+475=666…,所以191和253互为“影子数”,同时191和475也互为“影子数”,475和253都是191的“影子数”.
(1)若一个三位正整数M是67的倍数,它比它的一个“影子数”小107,求这个三位数M;
(2)若将一个三位正整数的十位和百位交换位置后组成的三位数是,且是的“影子数”,若﹣=540,求证:b=c+3.
查看答案和解析>>
科目: 来源: 题型:
【题目】在ABCD中,连接对角线BD,AB=BD,E为线段AD上一点,AE=BE,F为射线BE上一点,DE=BF,连接AF.
(1)如图1,若∠BED=60°,CD=2,求EF的长;
(2)如图2,连接DF并延长交AB于点G,若AF=2DE,求证:DF=2GF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com