学生基础性作业九年级数学人教版
注:当前书本只展示部分页码答案,查看完整答案请下载作业精灵APP。练习册学生基础性作业九年级数学人教版答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
7. 用配方法解一元二次方程$x^2 - 2x - 2025 = 0$时,将它转化为$(x + a)^2 = b$的形式,则$a^b$的值为______.
答案:方程变形为$x^2 - 2x = 2025$,两边加1得$(x - 1)^2 = 2026$,
则$a = -1$,$b = 2026$,$a^b = (-1)^{2026} = 1$
8. 用配方法解下列方程:
(1)$x^2 - 7x + 12 = 0$;
(2)$2x^2 - 4x - 16 = 0$;
(3)$5x^2 - 3x + 5 = x^2 + 5x$;
(4)$(x + 1)(2x - 3) = 1$.
答案:(1)$x^2 - 7x = -12$,$x^2 - 7x + (\frac{7}{2})^2 = -12 + \frac{49}{4}$,$(x - \frac{7}{2})^2 = \frac{1}{4}$,$x - \frac{7}{2} = \pm\frac{1}{2}$,解得$x_1 = 4$,$x_2 = 3$;
(2)方程两边除以2得$x^2 - 2x - 8 = 0$,$x^2 - 2x = 8$,$x^2 - 2x + 1 = 9$,$(x - 1)^2 = 9$,$x - 1 = \pm3$,解得$x_1 = 4$,$x_2 = -2$;
(3)移项合并得$4x^2 - 8x + 5 = 0$,$x^2 - 2x = -\frac{5}{4}$,$x^2 - 2x + 1 = -\frac{1}{4}$,$(x - 1)^2 = -\frac{1}{4}$,方程无实数根;
(4)展开得$2x^2 - x - 3 = 1$,$2x^2 - x = 4$,$x^2 - \frac{1}{2}x = 2$,$x^2 - \frac{1}{2}x + (\frac{1}{4})^2 = 2 + \frac{1}{16}$,$(x - \frac{1}{4})^2 = \frac{33}{16}$,$x - \frac{1}{4} = \pm\frac{\sqrt{33}}{4}$,解得$x_1 = \frac{1 + \sqrt{33}}{4}$,$x_2 = \frac{1 - \sqrt{33}}{4}$