精英家教网 > 高中数学 > 题目详情
17.在△ABC中,a,b,c分别为角A,B,C的对边,a=1,c=2,B=60°,则△ABC的面积S=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.2

分析 △ABC的面积S=$\frac{1}{2}acsinB$,由此根据已知条件能求出结果.

解答 解:在△ABC中,a,b,c分别为角A,B,C的对边,
∵a=1,c=2,B=60°,
∴△ABC的面积S=$\frac{1}{2}acsinB$=$\frac{1}{2}×1×2×sin60°$=$\frac{\sqrt{3}}{2}$.
故选:B.

点评 本题考查三角形面积的求法,考查三角形面积、正弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=lnx的图象在点(1,f(1))处的切线的斜率等于(  )
A.$\frac{1}{e}$B.1C.eD.e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的体积为(  )
A.16B.$\frac{4}{3}$C.$\frac{16}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知0<x<2π,且角x的终边和它的7倍角的终边相同,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$α∈({\frac{π}{2},π})$且sinα+cosα=$\frac{{1-\sqrt{3}}}{2}$,
(1)求cosα的值;
(2)若sin(α-β)=-$\frac{3}{5},β∈(\frac{π}{2},π)$,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且满足:Sn=2an-2,n∈N*
(1)求数列{an}的通项公式
(2)若bn=log2an,求数列$\{\frac{1}{{b}_{n}{b}_{n+1}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sin$\frac{x}{3}$-cos$\frac{x}{3}$.
(1)求函数f(x)的对称轴方程及相邻两条对称轴间的距离d;
(2)设α、β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-a|+|x-1|+2a.
(1)若f(2)≥0,求实数a的取值范围;
(2)若存在x∈R使得不等式f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥P-ABCD中,CD⊥平面PAD,AB∥CD,CD=AD=4AB=4,且AC⊥PA,M为线段CP上一点.
(1)求证:平面ACD⊥平面PAM;
(2)若PM=$\frac{1}{4}$PC且AP=$\frac{1}{2}$AD,求证:MB∥平面PAD,并求四棱锥M-ABCD的体积.

查看答案和解析>>

同步练习册答案