精英家教网 > 高中数学 > 题目详情
15.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow{b}$=$\sqrt{3}$$\overrightarrow{c}$,则向量$\overrightarrow{a}$与向量$\overrightarrow{c}$的夹角为$\frac{π}{6}$.

分析 作出图形,根据向量的几何意义和几何知识求出夹角.

解答 解:以$\overrightarrow{a},\overrightarrow{b}$为邻边作平行四边形OACB,∵|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,
∴四边形OACB是菱形,$\overrightarrow{OC}=\overrightarrow{a}+\overrightarrow{b}$=$\sqrt{3}\overrightarrow{c}$.
设OA=AC=1,则OC=$\sqrt{3}$.
∴cos∠AOC=$\frac{1+3-1}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$.
∴∠AOC=$\frac{π}{6}$.
故答案为$\frac{π}{6}$.

点评 本题考查了平面向量加法的几何意义,向量的夹角计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.相据下列各无穷数列的前4项,写出数列的一个通项公式:
(1)$\frac{2}{1×3}$,-$\frac{4}{3×5}$,$\frac{6}{5×7}$,-$\frac{8}{7×9}$,…;
(2)$\frac{1}{2}$,$\frac{3}{4}$,$\frac{7}{8}$,$\frac{15}{16}$….

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点D是△ABC中AB边的中点,CA=CB,E是CD的中点,AE的延长线交BC于F,记$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{DC}$=$\overrightarrow{b}$,则$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\overrightarrow{b}$B.$\frac{1}{2}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=f(x)是定义在R上的偶函数,且f(x+2)=$\frac{1}{f(x)}$,若x∈[2,3]时,f(x)=x.
(1)求证:f(x)为周期函数;
(2)求f(5.5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,B、D是以AC为直径的圆上的两点,其中AB=$\sqrt{t+1}$,AD=$\sqrt{t+2}$,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=(  )
A.1B.2C.tD.2t

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知点P(cosα,sinα),Q($\frac{3}{2}$,0),其中0<α<$\frac{π}{2}$.
(1)若$\overrightarrow{PQ}$$⊥\overrightarrow{PO}$,求cosα的值;
(2)若|$\overrightarrow{PQ}$|=|$\overrightarrow{PO}$|,求sin(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一几何体的三视图如图所示,则该几何体的体积为(  )
A.4$-\frac{π}{6}$B.4$-\frac{π}{3}$C.4$+\frac{π}{3}$D.12$-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上一点,过椭圆中心作直线交椭圆于A、B两点,直线PA、PB的斜率分别为k1,k2,且${k_1}{k_2}=-\frac{1}{4}$,则椭圆离心率为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.F1,F2分别为椭圆$\frac{x^2}{4}+\frac{y^2}{2}$=1的左右焦点,P为椭圆上一动点,F2关于直线PF1的对称点为M,F1关于直线PF2的对称点为N,则当|MN|的最大值为(  )
A.2B.3C.4D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案