精英家教网 > 高中数学 > 题目详情
6.设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q.已知b1=a1,b2=2,q=d,且d>1,S10=100.
(1)求数列{an},{bn}的通项公式;
(2)记cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

分析 (1)由已知求得公差和首项即可;
(2)Tn=1+$\frac{3}{2}+\frac{5}{{2}^{2}}+\frac{7}{{2}^{3}}+…+\frac{2n-1}{{2}^{n-1}}$,①$\frac{1}{2}{T}_{n}=\frac{1}{2}+\frac{3}{{2}^{2}}+\frac{5}{{2}^{3}}+…+\frac{2n-3}{{2}^{n-1}}+\frac{2n-1}{{2}^{n}}$.②利用错位相减法①-②可得Tn$\frac{2n+3}{{2}^{n}}$

解答 (1)由题意有,$\left\{\begin{array}{l}{10{a}_{1}+45d=100}\\{{a}_{1}d=2}\end{array}\right.即\left\{\begin{array}{l}{2{a}_{1}+9d=20}\\{{a}_{1}d=2}\end{array}\right.$,解得d=2或d=$\frac{2}{9}$(舍去),得a1=1,
故    $\left\{\begin{array}{l}{{a}_{n}=2n-1}\\{{b}_{n}={2}^{n-1}}\end{array}\right…(n∈{N}^{+})$                                                 …(5分)
(2)由d>1,知an=2n-1,bn=2n-1,故${c}_{n}=\frac{2n-1}{{2}^{n-1}}$,…(6分)
于是Tn=1+$\frac{3}{2}+\frac{5}{{2}^{2}}+\frac{7}{{2}^{3}}+…+\frac{2n-1}{{2}^{n-1}}$,①
$\frac{1}{2}{T}_{n}=\frac{1}{2}+\frac{3}{{2}^{2}}+\frac{5}{{2}^{3}}+…+\frac{2n-3}{{2}^{n-1}}+\frac{2n-1}{{2}^{n}}$.②
①-②可得,$\frac{1}{2}{T}_{n}=2+\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}}-\frac{2n-1}{{2}^{n}}\\;\\;\\;\$=3-$\frac{2n+3}{{2}^{n}}$
故Tn=6-$\frac{2n+3}{{2}^{n-1}}$. …(10分)

点评 本题考查了等差数列的通项,及错位相减法求和,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知cos(π+α)=-$\frac{3}{5}$,α是第四象限角,那么sin(3π+α)的值是(  )
A.$\frac{3}{5}$B.-$\frac{4}{5}$C.$\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合U={1,3,5,7,9},A={3,7,9},B={1,9},则A∩(∁UB)={3,7}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x,y∈R,命题p:若x>|y|,则x>y;命题q:若x+y>0,则x2>y2,在命题(1)p∨q;(2)(¬p)∧(¬q);(3)p∧(¬q);(4)p∧q中,证明题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某学校研究性学习课题组为了研究学生的数学成绩优秀和物理成绩优秀之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如表所示:
序号1234567891011121314151617181920
数学9575809492656784987167936478779057927293
物理9063729291715891938177824891699661847893
规定:数学、物理成绩90分(含90分)以上为优秀.
(Ⅰ)根据上表完成下面的2×2列联表,并说明能否有99%的把握认为学生的数学成绩优秀与物理成绩优秀之间有关系?
优秀不优秀合计
优秀628
不优秀21012
合计81220
(Ⅱ)记数学、物理成绩均优秀的6名学生为A、B、C、D、E、F,现从中选2名学生进行自主招生培训,求A、B两人中至少有一人被选中的概率.
参考公式及数据:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.10.050.010.005
k02.7063.8416.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如表是某商店每月某种商品的销售额(用y表示,单位:万元)与月份(t)的关系对照表.
月份(t)12345
销售额(y)y1y2y3y4y5
其中$\overline{y}$=10,$\sum_{i=1}^{5}$tiyi=163.请建立y关于t的回归方程(系数精确到0.01)并预测6月份这种商品的销售额.
参考公式:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t+$\stackrel{∧}{a}$中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t}({y}_{i}-\overline{y}))}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={y|y=sinx,x∈R},B={x|y=lg(-x)},则A∩B=(  )
A.(0,1]B.[-1,0)C.[-1,0]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2},
(1)求A∩B,A∪B.
(2)若集合C={x|2x+a>0},满足C∪B=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\left\{{\begin{array}{l}{x-2,x≥10}\\{f[f(x+6)],x<10}\end{array}}$则f(6)=(  )
A.10B.-10C.8D.-8

查看答案和解析>>

同步练习册答案