分析 (1)设直线与抛物线交于A(x1,y1),B(x2,y2)
联立$\left\{\begin{array}{l}{{y}^{2}=12x}\\{y=2x-1}\end{array}\right.$消y得4x2-16x+1=0,x1+x2=4,${x}_{1}{x}_{2}=\frac{1}{4}$
可得|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=5$\sqrt{3}$
(2)设直线的方程为y-(-1)=kx即y=kx-1
联立$\left\{\begin{array}{l}{{y}^{2}=12x}\\{y=kx-1}\end{array}\right.$消y得k2x2-(2k+12)x+1=0
分k=0,k≠0两种情况讨论
解答 解:(1)设直线与抛物线交于A(x1,y1),B(x2,y2)
由题意得直线的方程为y-(-1)=2(x-0)即y=2x-1
联立$\left\{\begin{array}{l}{{y}^{2}=12x}\\{y=2x-1}\end{array}\right.$消y得4x2-16x+1=0,
x1+x2=4,${x}_{1}{x}_{2}=\frac{1}{4}$
可得|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=5$\sqrt{3}$;
(2)设直线的方程为y-(-1)=kx即y=kx-1
联立$\left\{\begin{array}{l}{{y}^{2}=12x}\\{y=kx-1}\end{array}\right.$消y得k2x2-(2k+12)x+1=0
当k=0时直线y=1与抛物线交于一点($\frac{1}{12}$,0);
当k≠0时,则△=(2k+12)2-4k2=0.
即k=-3,直线y=3x+1与抛物线相切,只有一个交点
综上所述:斜率k为0或-3时,直线与抛物线只有一个交点.
点评 本题考查抛物线与直线的位置关系,方程思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心 外心 垂心 | B. | 重心 外心 内心 | ||
| C. | 外心 重心 垂心 | D. | 外心 重心 内心 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $-\frac{3}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com