精英家教网 > 高中数学 > 题目详情
8.如图,给出的是计算连乘数值的程序框图,其中判断框内不能填入(  )
A.i≤2019?B.i<2019?C.i≤2017?D.i≤2018?

分析 执行程序框图,即可得出结论

解答 解:由框图可知:i=2时,s=1×$\frac{1}{2}$,i=4时,s=$\frac{1}{2}×\frac{1}{4}$,….
i=2018时,s=$\frac{1}{2}×\frac{1}{4}$×…×$\frac{1}{2018}$,所以C不满足.
故选C.

点评 本题主要考查了程序框图和算法,关键是模拟程序,得出规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚,车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调査,并统计得出某款车的使用年限x与所支出的总费用y(万元)有如下的数据资料:
使用年限x23456
总费用y2.23.85.56.57.0
若由资料知y对x呈线性相关关系.试求:
1线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
2估计使用年限为10年时,车的使用总费用是多少?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x+5;函数g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)=$\frac{1}{4}$,且g[f(x)]≥k对x∈[-1,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示,在长方体ABCD-A1B1C1D1中,AD=2,AB=AE=1,M为矩形AEHD内一点,若∠MGF=∠MGH,MG和平面EFGH所成角的正切值为$\frac{1}{2}$,则点M到平面EFGH的距离为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线y=m分别与曲线y=2(x+1),与y=x+lnx交于点A,B,则|AB|的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{5}}{5}$.
(1)求sin($\frac{π}{4}$+α)的值;
(2)(理科)求cos($\frac{5π}{6}$-2α)的值.
(文科)求cos2α+sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某城市一个交通路口原来只设有红绿灯,平均每年发生交通事故80起,案件的破获率为70%.为了加强该路口的管理,第二年在该路口设置了电子摄像头,该年发生交通事故70起,共破获了56起,第三年的白天安排了交警执勤,该年发生交通事故60起,破获了54起.
(1)根据以上材料分析,加强管理后的两年该路口的交通状况发生了怎样的变化
(2)试采用独立性检验进行分析,电子摄像头和白天的民警执勤对该路口交通肇事案件的破获分别产生了什么样的影响.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,AB=1,BC=PA=2,则该几何体外接球的表面积为(  )
A.B.C.12πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过圆x2+y2-8x-2y+8=0内一点P(3,-1)的最长弦,最短弦所在的直线方程式分别是(  )
A.x-y-4=0,2x-y-7=0B.2x+y-5=0,x-2y-5=0
C.x-2y-1=0,2x-y-7=0D.2x-y-7=0,x+2y-1=0

查看答案和解析>>

同步练习册答案