精英家教网 > 高中数学 > 题目详情
13.等差数列{an}中,a2=3,a5=9,求前10项的和S10

分析 利用等差数列的通项公式与求和公式即可得出.

解答 解:设等差数列{an}的公差为d.∵a2=3,a5=9,∴$\left\{\begin{array}{l}{{a}_{1}+d=3}\\{{a}_{1}+4d=9}\end{array}\right.$,
解得d=2,a1=1.
∴S10=10×1+$\frac{10×9}{2}×2$=100.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(0,1),离心率为$\frac{\sqrt{2}}{2}$,过点B(0,-2)及左焦点F1的直线交椭圆于C,D两点,右焦点为F2
(1)求椭圆的方程;
(文科)(2)求弦长CD.
(理科)(2)求△CDF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a,b>0})$的左、右焦点分别为F1,F2,过F2的直线与双曲线C的右支相交于P,Q两点,若$\overrightarrow{P{F_2}}=3\overrightarrow{{F_2}Q}$,若△PQF1是以Q为顶角的等腰三角形,则双曲线的离心率e=(  )
A.3B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{2x,x>0}\end{array}\right.$,则不等式f(x)<x+2的解集为(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各函数中,定义域为R的是(  )
A.f(x)=$\frac{1}{x}$B.f(x)=$\frac{{x}^{2}-2}{{x}^{2}+1}$C.f(x)=$\sqrt{x}$D.f(x)=x2(x≥0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的是(  )
A.“x=-1”是“x2-5x-6=0”的必要不充分条件
B.若命题p:?x0∈R,x02-2x0-1>0,则命题¬p:?x∈R,x2-2x-1<0
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=log5(1-x)的定义域是(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知g(x)=log${\;}_{\frac{1}{3}}$x的反函数为y=f(x).
(1)若函数g(kx2+2x+1)的定义域为R,求k的范围;
(2)当x∈[-1,1]时,函数y=[f(x)]2-2mf(x)+3存在零点,求m范围;
(3)定义在I上的函数F(x),如果满足:对任意x∈I,存在常数M,使得F(x)≤M成立,则称函数F(x)是I上的“上限”函数,其中M为函数F(x)的“上限”.记h(x)=$\frac{1-mf(-x)}{1+mf(-x)}$(m≠0);问:函数h(x)在区间[0,1]上是否存在“上限”M?若存在,求出M的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设M,P是两个非空集合,定义M与P的差集为M-P={x|x∈M,x∉P}.已知A={1,3,5,7},B={2,3,5},则集合A-B的子集个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案