精英家教网 > 高中数学 > 题目详情
方程x2+(k-2)x+5-k=0的两个不等实根都大于2,则实数k的取值范围是(  )
A、k<-2
B、k≤-4
C、-5<k≤-4
D、-5<k<-4
考点:根与系数的关系
专题:函数的性质及应用
分析:设f(x)=x2+(k-2)x+5-k,由题意利用二次函数的性质求出k的范围.
解答: 解:令f(x)=x2+(k-2)x+5-k,由题意可得
=(k-2)2-4(-k)>0
x1+x2
2
=
2-k
2
>2
f(2)=4+(k-2)×2+5-k>0

解得-5<k<-4,
故选:D.
点评:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=x3+ax2+bx+c在区间[-2,2]单调递减,则4a+b的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|
2
x
>1},N={y|y=x2+1},则M∩N=(  )
A、[1,2)B、(1,2)
C、(2,+∞)D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=
2
2
,现有下列结论:
①AC⊥BE;
②平面AEF与平面ABCD的交线平行于直线EF;
③异面直线AE,BF所成的角为定值;
④三棱锥A-BEF的体积为定值,其中错误结论的个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为2
3
,则a=(  )
A、-1
B、0
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}对任意m,n∈N+都有am+n=am+an+3,若a1=3,则数列{an}的通项公式an=(  )
A、6n-3B、4n-1
C、2n+1D、3n

查看答案和解析>>

科目:高中数学 来源: 题型:

从学号为1~60的高一某班60名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是(  )
A、10,20,30,40,50
B、6,18,30,42,54
C、2,4,6,8,10
D、4,13,22,31,40

查看答案和解析>>

科目:高中数学 来源: 题型:

从装有n+1个球的口袋中取出m个球(0<m≤n,m,n∈N),共有C
 
m
n+1
种取法.在这C
 
m
n+1
种取法中,可以分成一个指定的球被取到和未被取到两类:一类是该指定的球未被取到,共有C
 
0
1
•C
 
m
n
种取法;另一类是该指定的球被取到,共有C
 
1
1
•C
 
m-1
n
种取法.显然C10•Cnm+C11•Cnm-1=C
 
m
n+1
,即有等式:C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
成立.试根据上述思想,则有:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k(其中当1≤k<m≤n,k,m,n∈N)为(  )
A、C
 
m
n+k
B、C
 
m
n+k+1
C、C
 
m+1
n+k
D、C
 
k
n+m

查看答案和解析>>

科目:高中数学 来源: 题型:

下面多面体中有12条棱的是(  )
A、四棱柱B、四棱锥
C、五棱锥D、五棱柱

查看答案和解析>>

同步练习册答案