精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为直角梯形,相交于点,三棱锥的体积为9.

(1)求的值;

(2)过点的平面平行于平面与棱分别相交于点,求截面的周长.

【答案】(Ⅰ).(Ⅱ).

【解析】【试题分析】(1)利用体积公式列方程可求得.(2)利用面面平行的性质定理可有,利用相似三角形可求得各边长,过点,则.所以截面的周长为.

【试题解析】

(Ⅰ)四棱锥中,底面

为直角梯形,

所以解得.

(Ⅱ)【法一】因为平面,平面平面

平面平面

根据面面平行的性质定理,所以

同理, 因为,

所以

又因为,所以

同理,

如图:作,所以

故四边形为矩形,即(求长2分,其余三边各1分)

所以

所以截面的周长为.

【法二】因为平面,平面平面

平面平面

所以同理

因为

所以

所以

同理,连接,则有

所以,所以,同理,

过点,则

所以截面的周长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,已知直角梯形ABCD中,AB//DCABADECD的中点,沿AE把△DAE折起到△PAE的位置(D折后变为P),使得PB=2,如图2.

Ⅰ)求证:平面PAE⊥平面ABCE

Ⅱ)求点B到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,是棱上的动点,的中点.

(1)当中点时,求证:平面

(2)在棱上是否存在点,使得平面与平面所成锐二面角为,若存在,求的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为4的菱形分别是边的中点沿翻折到连接得到如图所示的五棱锥.

(1)求证:平面平面

(2)求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若的图像在处的切线过点,求的值并讨论上的单调增区间;

(Ⅱ)定义:若直线与曲线都相切,则我们称直线为曲线的公切线.若曲线存在公切线,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018安徽江南十校高三3月联考线段为圆 的一条直径,其端点 在抛物线 上,且 两点到抛物线焦点的距离之和为

I)求直径所在的直线方程;

II)过点的直线交抛物线 两点,抛物线 处的切线相交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此中元素的含量不小于18毫克时,该产品为优等品.

(1)试用样品数据估计甲、乙两种产品的优等品率;

(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望

(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率);

.

评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.

2将直径小于等于或直径大于的零件认为是次品.

)从设备的生产流水线上随意抽取2件零件,计算其中次品个数的数学期望

)从样本中随意抽取2件零件,计算其中次品个数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点上的点,满足.

1)当点在圆上运动时,求点的轨迹方程;

2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点是坐标原点,且时,求的取值范围.

查看答案和解析>>

同步练习册答案