精英家教网 > 高中数学 > 题目详情
13.已知等差数列{an}满足a3=2,前3项和S3=$\frac{9}{2}$.
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}前n项和Tn
(3)若cn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{cn}的前n项的和Kn

分析 (1)利用等差数列通项公式和前n项和公式列出方程组,求出${a}_{1}=1,d=\frac{1}{2}$,由此能求出{an}的通项公式.
(2)求出b1=1,b4=8,由此利用等比数列通项公式求出公比,从而能求出{bn}前n项和Tn
(3)由cn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{4}{(n+1)(n+2)}$=4($\frac{1}{n+1}-\frac{1}{n+2}$),利用裂项求和法能求出数列{cn}的前n项的和.

解答 解:(1)∵等差数列{an}满足a3=2,前3项和S3=$\frac{9}{2}$,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=2}\\{3{a}_{1}+3d=\frac{9}{2}}\end{array}\right.$,解得${a}_{1}=1,d=\frac{1}{2}$,
∴${a}_{n}=1+(n-1)×\frac{1}{2}$=$\frac{1}{2}n+\frac{1}{2}$.
(2)∵等比数列{bn}满足b1=a1=1,b4=a15=$\frac{15}{2}+\frac{1}{2}$=8,
∴q3=8,∴q=2,
∴{bn}前n项和Tn=$\frac{1-{2}^{n}}{1-2}$=2n-1.
(3)∵cn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{4}{(n+1)(n+2)}$=4($\frac{1}{n+1}-\frac{1}{n+2}$),
∴数列{cn}的前n项的和:
Kn=4($\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+…+\frac{1}{n+1}-\frac{1}{n+2}$)
=4($\frac{1}{2}-\frac{1}{n+2}$)
=2-$\frac{4}{n+2}$.

点评 本题考查数列的通项公式、前n项和公式的求法,是中档题,解题时要认真审题,注意等差数列、等比数列、裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设0<α<π,若$cos(α+\frac{π}{6})=-\frac{3}{5}$,求$sin(2α+\frac{π}{12})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2(3,0),过F2的直线交椭圆C于A,B两点,且M(1,-1)是线段AB的中点.
(1)求椭圆C的离心率;
(2)已知F1是椭圆的左焦点,求△F1AB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知∠BAC=90°,AB=6,D点在斜边BC上,$\overrightarrow{CD}=\frac{1}{2}\overrightarrow{DB}$,则$\overrightarrow{AB}•\overrightarrow{AD}$的值为(  )
A.48B.24C.12D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow m=(sin2x,1)$,$\overrightarrow n=(cos2x,-\frac{3}{2})$,$f(x)=(\overrightarrow m-\overrightarrow n)•\overrightarrow m$,则函数f(x)的最小正周期与最大值分别为(  )
A.$π,3+\frac{{\sqrt{2}}}{2}$B.$\frac{π}{2},3+\frac{{\sqrt{2}}}{2}$C.$π,\frac{7}{2}$D.$\frac{π}{2},3$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义实数集R的子集M的特征函数为${f_M}(x)=\left\{\begin{array}{l}1,x∈M\\ 0,x∈{C_R}M\end{array}\right.$.若A,B⊆R,对任意x∈R,有如下判断:
①若A⊆B,则fA(x)≤fB(x);      ②fA∩B(x)=fA(x)•fB(x);
③${f_{{C_R}A}}(x)=1-{f_A}(x)$;               ④fA∪B(x)=fA(x)+fB(x).
其中正确的是①②③.(填上所有满足条件的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在某次数学测验中,学号i(i=1,2,3,4)的四位同学的考试成绩f(i)∈{90,92,93,96,98},且满足f(1)<f(2)≤f(3)<f(4),则这四位同学的考试成绩的所有可能情况的种数为(  )
A.9种B.5种C.23种D.15种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F1(-4,0),F2(4,0),动点P满足||PF1|-|PF2||=4,则点P的轨迹方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{y^2}{4}-\frac{x^2}{12}=1$D.$\frac{y^2}{12}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.P是抛物线y2=3x上的点,则点P到直线3x+4y+9=0的距离的最小值为1.

查看答案和解析>>

同步练习册答案