精英家教网 > 高中数学 > 题目详情
16.2015年春晚上,有一种旋转舞台灯,其外形呈正四棱柱,每个侧面上安装了5只不同的彩灯,每只彩灯发光的概率为$\frac{1}{2}$,若每个侧面上至少3只彩灯正常发光,则该侧面不需要维修,否则需要维修.
(Ⅰ)求恰有两个侧面需要维修的概率;
(Ⅱ)设四个侧面的维修费分别为100元、100元、200元、200元,记需要维修的费用为X,求X的分布列及期望.

分析 (I)某个侧面需要维修的概率=${∁}_{5}^{2}(\frac{1}{2})^{5}$+${∁}_{5}^{1}×(\frac{1}{2})^{5}$+$(\frac{1}{2})^{5}$=$\frac{1}{2}$,可得恰有两个侧面需要维修的概率=${∁}_{4}^{2}(\frac{1}{2})^{4}$.
(II)由题意可知:X的可能取值为0,100,200,300,400,500,600.利用互斥事件与二项分布列的概率计算公式即可得出.

解答 解:(I)某个侧面需要维修的概率=${∁}_{5}^{2}(\frac{1}{2})^{5}$+${∁}_{5}^{1}×(\frac{1}{2})^{5}$+$(\frac{1}{2})^{5}$=$\frac{1}{2}$,
故恰有两个侧面需要维修的概率=${∁}_{4}^{2}(\frac{1}{2})^{4}$=$\frac{3}{8}$.
(II)由题意可知:X的可能取值为0,100,200,300,400,500,600.
其分布列为:

X0100200300400500600
P$\frac{1}{16}$$\frac{1}{8}$$\frac{3}{16}$$\frac{1}{4}$$\frac{3}{16}$$\frac{1}{8}$$\frac{1}{16}$
故E(X)=$\frac{0+100×2+200×3+300×4+400×3+500×2+600×1}{16}$=300.

点评 本题考查了互斥事件与二项分布列的概率计算公式、组合计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=\frac{2}{x}$的单调递减区间为(  )
A.(-∞,+∞)B.(-∞,0)∪(0,+∞)C.(-∞,0),(0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面ABCD是正方形,PD⊥底面ABCD,PD=AB,
(1)若E为PA的中点,求异面直线AC与BE所成角的余弦值;
(2)若点F在侧棱PC上,二面角F-BD-C的余弦值为$\frac{\sqrt{3}}{3}$,求$\frac{PF}{PC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个半径为$\sqrt{6}$的球的内接正四棱柱的高为4,则该正四棱柱的表面积为(  )
A.24B.32C.36D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某种证件的获取规则是:参加科目A和科目B的考试,每个科目考试的成绩分为合格与不合格,每个科目最多只有2次考试机会,且参加科目A考试的成绩为合格后,才能参加科目B的考试;参加某科目考试的成绩为合格后,不再参加该科目的考试,参加两个科目考试的成绩均为合格才能获得该证件.现有一人想获取该证件,已知此人每次参加科目A考试的成绩为合格的概率是$\frac{2}{3}$,每次参加科目B考试的成绩为合格的概率是$\frac{1}{2}$,且各次考试的成绩为合格与不合格均互不影响.假设此人不放弃按规则所给的所有考试机会,记他参加考试的次数为X.
(Ⅰ)求X的所有可能取的值;
(Ⅱ)求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知角α的正弦线和余弦线长度相等,且α的终边在第三象限,则tanα等于(  )
A.0B.1C.-1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2+mx+n,且y=f(x+2)的图象关于y轴对称,则大小关系正确的是(  )
A.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)B.f(1)<f($\frac{7}{2}$)<f($\frac{5}{2}$)C.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)D.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\overrightarrow a,\;\overrightarrow b$为同向单位向量,若$\overrightarrow a•\overrightarrow b=\frac{{1+4{k^2}}}{4k}$(k>0),则k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,$\overrightarrow{a}=(1,1)$,$\overrightarrow{a}+3\overrightarrow{b}=(4,-2)$,则cosθ=(  )
A.0B.$\frac{3}{5}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

同步练习册答案