精英家教网 > 高中数学 > 题目详情
已知A(0,7),B(0,-7),C(12,2),以C为一个焦点过A,B的椭圆,椭圆的另一个焦点F的轨迹方程是(  )
A、y2-
x2
48
=1
B、x2-
y2
48
=1
C、y2-
x2
48
=1(y≤-1)
D、x2-
y2
48
=1(y≤-1)
考点:轨迹方程
专题:圆锥曲线的定义、性质与方程
分析:由已知点的坐标求出|AC|、|BC|、|AB|的长度,由题意得到|AF|-|BF|=|BC|-|AC|=2,说明F点的轨迹是以A、B为焦点,实轴长为2的双曲线下支,则答案可求.
解答: 解:由题意|AC|=13,|BC|=15,
|AB|=14,又|AF|+|AC|=|BF|+|BC|,
∴|AF|-|BF|=|BC|-|AC|=2<14.
故F点的轨迹是以A、B为焦点,实轴长为2的双曲线下支.
又c=7,a=1,b2=48,
∴焦点F的轨迹方程为y2-
x2
48
=1(y≤-1).
故选:C.
点评:本题考查了轨迹方程,考查了双曲线的定义,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达.则这两艘船中至少有一艘在停靠泊位时必须等待的概率是(  )
A、
9
16
B、
1
2
C、
7
16
D、
3
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:
1
x
<1,条件q:|x|≤1,则¬p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、即非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx+d在O,A点处取到极值,其中O是坐标原点,A在曲线y=x2sinx+xcosx,x∈[
π
3
3
]上,则曲线y=f(x)的切线的斜率的最大值是(  )
A、
4
B、
3
2
C、
3
3
π
4
+
3
4
D、
3
3
π
4
-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=k(x-2)(k>0)与抛物线C:y2=8x交于A,B两点,F为抛物线C的焦点,若|AF|=2|BF|,则k的值是(  )
A、
1
3
B、
2
2
3
C、
2
4
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=lnx+ax+
x2
2
为其定义域上的增函数,则实数a的取值范围是(  )
A、(0,+∞)
B、[0,+∞)
C、(-1,0)
D、[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=0,a2=-20,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(Ⅰ)求a3,a5
(Ⅱ)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;
(Ⅲ)记数列{bn}的前n项和为Sn,求正整数k,使得对任意n∈N*均有sk≤sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点,M是椭圆上异于A,B的任意一点,直线l是椭圆的右准线.
(1)若椭圆C的离心率为
1
2
,直线l:x=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰好过原点,求椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AC为⊙O的直径,OB⊥AC,弦BN交AC于点M.若OC=
3
,OM=1,则MN的长为
 

查看答案和解析>>

同步练习册答案