精英家教网 > 高中数学 > 题目详情
已知条件p:
1
x
<1,条件q:|x|≤1,则¬p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、即非充分也非必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的性质,结合充分条件和必要条件的定义即可得到结论.
解答: 解:由
1
x
<1,得x<0或x>1,则¬p:0≤x≤1,
由|x|≤1,得-1≤x≤1.
所以p是q的充分不必要条件,
故选:A.
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将2个相同的a和2个相同的b共4个字母填在3×3的方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法种数为(  )
A、196B、197
C、198D、199

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
1+3i
1-i
,则z的实部为(  )
A、1B、2C、-2D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x,x>0
x+1,x≤0
,若f(a)+f(1)=0,则实数a的值等于(  )
A、3B、1C、-1D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x-y≤2
x-2y≥0
x≥0
,则z=x+2y的最大值是(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

若|cosx|=cos(π-x),则角x的取值范围是(  )
A、2kπ-
π
2
≤x≤2kπ+
π
2
(k∈Z)
B、2kπ+
π
2
<x<2kπ+
2
(k∈Z)
C、2kπ+
π
2
≤x≤2kπ+
2
(k∈Z)
D、2kπ+π≤x≤2kπ+2π(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是偶函数”是“φ=2kπ+
π
2
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(0,7),B(0,-7),C(12,2),以C为一个焦点过A,B的椭圆,椭圆的另一个焦点F的轨迹方程是(  )
A、y2-
x2
48
=1
B、x2-
y2
48
=1
C、y2-
x2
48
=1(y≤-1)
D、x2-
y2
48
=1(y≤-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:x2-a>0.

查看答案和解析>>

同步练习册答案