精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.

1)求椭圆的方程;

2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值.

【答案】1;(26.

【解析】

(1)首先可根据题意得出,然后根据得出,最后通过计算出的值并写出椭圆方程;

(2)首先可以设,然后根据直线过点设出直线方程,再然后联立直线方程与椭圆方程,根据韦达定理得出以及,再然后结合题意得出四边形是平行四边形以及其面积,最后通过计算即可得出结果.

(1)因为椭圆上一点到左右两个焦点的距离之和是4

所以

因为,所以

所以椭圆C方程为.

(2)设

因为直线过点,所以可设直线方程为

联立方程,消去可得:

化简整理得

其中

因为,所以四边形是平行四边形,

设平面四边形的面积为

,则

所以

因为,所以

所以四边形面积的最大值为6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

1)求

2)我们知道二项式的展开式,若等式两边对求导得,令.利用此方法解答下列问题:

①求

②求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的左右焦点,点在椭圆上,且.

(1)求椭圆的方程;

(2)过的直线分别交椭圆,且,问是否存在常数,使得等差数列?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数的图象,只要将函数的图象( )

A.每一点的横坐标变为原来的(纵坐标不变),再将所得图象向左平移个长度

B.每一点的横坐标变为原来的(纵坐标不变),再将所得图象向左平移个长度

C.向左平移个长度,再将所得图象每一点的横坐标变为原来的(纵坐标不变)

D.向左平移个长度,再将所得图象每一点的横坐标变为原来的(纵坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,侧面⊥底面,底面为直角梯形,//的中点.

(Ⅰ)求证:PA//平面BEF;

(Ⅱ)若PCAB所成角为,求的长;

(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,且)是定义域为R的奇函数.

1)求t的值;

2)若,求使不等式对一切恒成立的实数k的取值范围;

3)若函数的图象过点,是否存在正数m),使函数上的最大值为0,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2)已知抛物线上一点,过点作抛物线的两条弦,且,判断直线是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中, 平面,在平行四边形中,

(1)求证: 平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,若该几何体的外接球表面积为,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案