精英家教网 > 高中数学 > 题目详情
在0、1、2、3、5中任取4个数组成没重复的四位数,且使该四位数能被剩下的数除尽,这样的数共有
 
考点:计数原理的应用,排列、组合的实际应用
专题:应用题,排列组合
分析:分类讨论,考虑剩0,1,2,3,5,分别求得相应数的个数,即可得出结论.
解答: 解:剩0,舍去
剩1,都可除尽,有3×3×2×1=18个
剩2,末位为0可除尽,有3×2×1×1=6个
剩3,0+1+2+5=8,不可除尽
剩5,末位为0可除尽,有3×2×1×1=6个,
故共有18+6+6=30个.
故答案为:30个.
点评:本题考查计数原理的运用,考查分类讨论的数学思想,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱长为2,且侧棱AA1⊥底面ABC,点D是BC的中点
(1)求证:AD⊥C1D;
(2)求直线AC与平面ADC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点C为半圆的直径AB延长线上一点,AB=BC=2,过动点P作半圆的切线PQ,若PC=
3
PQ
,则△PAC的面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC面积S和三边a,b,c满足:S=a2-(b-c)2,b+c=8,则△ABC面积S的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意x>0,
x
x2+3x+1
≤a
恒成立,则a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从5本不同的文艺书和6本不同的科技书中任取3本,则文艺书和科技书都至少有一本的不同取法共有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

一动圆P与圆O1:x2+y2=1和圆O2:x2+y2-8x+7=0均内切,则动圆P圆心的轨迹是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Pn={A|A=(a1,a2,a3,…,an),ai=2013或2014,i=1,2,3,…,n}(n≥2),对于U,V∈Pn,d(U,V)表示U和V中相对应的元素不同的个数.
(1)令U=(2014,2014,2014,2014,2014),存在m个V∈Ps,使得d(U,V)=2,则m=
 

(2)令U=(a1,a2,a3,…,an),若V∈Pn,则所有d(U,V)之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110cm的株数大约是(  )
A、3000B、6000
C、7000D、8000

查看答案和解析>>

同步练习册答案