| A. | [$\frac{1}{e}$,e] | B. | ($\frac{2}{e}$,e] | C. | ($\frac{2}{e}$,+∞) | D. | ($\frac{2}{e}$,e+$\frac{1}{e}$) |
分析 设f(x)=lnx-x+1+a,g(y)=y2ey,求函数的导数,利用导数研究函数的单调性和最值,建立条件关系进行求解即可.
解答 解:设f(x)=lnx-x+1+a,当x∈[$\frac{1}{e}$,1]时,f′(x)=$\frac{1-x}{x}$>0,f(x)是增函数,
∴x∈[$\frac{1}{e}$,1]时,f(x)∈[a-$\frac{1}{e}$,a],
设g(y)=y2ey,
∵对任意的x∈[$\frac{1}{e}$,1],总存在唯一的y∈[-1,1],使得lnx-x+1+a=y2ey成立,
∴[a-$\frac{1}{e}$,a]是g(y)的不含极值点的单值区间的子集,
∵g′y(y)=y(2+y)ey,∴y∈[-1,0)时,
若g′y(y)<0,g(y)=y2ey是减函数,
若y∈(0,1],g′y(y)>0,g(y)=y2ey是增函数,
∵g(-1)=$\frac{1}{e}$<e=g(1),
∴[a-$\frac{1}{e}$,a]⊆($\frac{1}{e}$,e],
∴$\frac{2}{e}$<a≤e;
故选:B
点评 本题主要考查方程恒成立问题,构造函数,求函数的导数,利用导数研究函数的单调性和取值范围是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\frac{3\sqrt{3}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 钝角三角形 | B. | 直角三角形 | ||
| C. | 锐角三角形 | D. | 由增加的长度决定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com