精英家教网 > 高中数学 > 题目详情
17.函数f(x)=$\left\{\begin{array}{l}{x+2(x≤0)}\\{-{x}^{2}+2x+2(x>0)}\end{array}\right.$的图象和函数g(x)=2x的图象的交点的个数有2个.

分析 分别画出f(x)与g(x)的图象,由图象可知,有2个交点,问题得以解决.

解答 解:分别画出f(x)与g(x)的图象,由图象可知,有2个交点,
故答案为:2.

点评 本题考查了函数图象的画法和图象的交点的个数问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知直线l1:(3+m)x+4y=5-3m与l2:2x+(5+m)y=8,则“l1∥l2”是“m=-7”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{2x-1,x≥0}\end{array}\right.$,若f(f(m))=0,则m=-1或$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线l:x-y+2$\sqrt{2}$=0的距离为3.
(1)求椭圆的方程;
(2)设直线l:y=x+m,是否在实数m,使直线l与(1)中的椭圆有两个不同的交点,使|AM|=|AN|,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若x,y∈R+,xy2=4,则x+2y的最小值,x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知e为自然对数的底数,若对任意的x∈[$\frac{1}{e}$,1],总存在唯一的y∈[-1,1],使得lnx-x+1+a=y2ey成立,则实数a的取值范围是(  )
A.[$\frac{1}{e}$,e]B.($\frac{2}{e}$,e]C.($\frac{2}{e}$,+∞)D.($\frac{2}{e}$,e+$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设a、b是实数,则(a-2b)2+$\frac{1}{4}$b2-5b+2a+$\frac{5}{2}$的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数x,y满足x2+$\frac{{y}^{2}}{2}$=1,则x$\sqrt{1+{y}^{2}}$的最大值为$\frac{3\sqrt{2}}{4}$,最小值为-$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,且2c•cosB=2a+b,若△ABC的面积$S=\sqrt{3}({a+b})$.
(Ⅰ)求C的度数;
(Ⅱ)求ab的最小值.

查看答案和解析>>

同步练习册答案