精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{2x-1,x≥0}\end{array}\right.$,若f(f(m))=0,则m=-1或$\frac{3}{4}$.

分析 由已知得f(m)=$\frac{1}{2}$,由此利用分段函数的性质能求出m的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{2x-1,x≥0}\end{array}\right.$,f(f(m))=0,
∴f(m)≥0,2f(m)-1=0,解得f(m)=$\frac{1}{2}$,
当m<0时,f(m)=${2}^{m}=\frac{1}{2}$,解得m=-1;
当m≥0时,f(m)=2m-1=$\frac{1}{2}$,解得m=$\frac{3}{4}$.
∴m的值为-1或$\frac{3}{4}$.
故答案为:-1或$\frac{3}{4}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设集合A={x|$\frac{1}{2}$<x<3},B={x|(x+1)(x-2)<0},则A∩B=(  )
A.{x|$\frac{1}{2}$<x<2}B.{x|-1<x<3}C.{x|$\frac{1}{2}$<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设ξ为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱异面时,ξ=1;当两条棱平行时,ξ的值为两条棱之间的距离,则数学期望Eξ=$\frac{{6+\sqrt{2}}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆x2+y2=4的两弦AB,CD交于点P($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$),且$\overrightarrow{AB}$$•\overrightarrow{CD}$=0,则|$\overrightarrow{AD}$$+\overrightarrow{CB}$|的值为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知i是虚数单位,m,n∈R,且m+2i=2-ni,则$\frac{m+ni}{m-ni}$的共轭复数为i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若△ABF2的面积是△BCF2的面积的2倍,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正项数列{an}的前n项和Sn满足:4Sn=(an-1)(an+3),(n∈N*
(1)求an
(2)若bn=2n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\left\{\begin{array}{l}{x+2(x≤0)}\\{-{x}^{2}+2x+2(x>0)}\end{array}\right.$的图象和函数g(x)=2x的图象的交点的个数有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知θ为锐角,ln(1+sinθ)=a,ln($\frac{1}{1-sinθ}$)=b,则lncosθ的值为$\frac{a-b}{2}$.

查看答案和解析>>

同步练习册答案