精英家教网 > 高中数学 > 题目详情
1.f(x)=-lnx+ax2+bx-a-2b的两个极值点是x1,x2,f(x2)=x2>x1,则2af(x)2+bf(x)-1=0的根的个数是5.

分析 由函数f(x)=-lnx+ax2+bx-a-2b有两个极值点x1,x2,可得2ax2+bx-1=0有两个不相等的正根,必有△=b2+8a>0.而方程2a(f(x))2+bf(x)-1=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解的个数.

解答 解:∵函数f(x)=-lnx+ax2+bx-a-2b有两个极值点x1,x2
∴f′(x)=-$\frac{1}{x}$+2ax+b=$\frac{2a{x}^{2}+bx-1}{x}$,
即为2ax2+bx-1=0有两个不相等的正根,
∴△=b2+8a>0.∵x1<x2,∴解得∴x1=$\frac{-b+\sqrt{{b}^{2}+8a}}{4a}$,x2=$\frac{-b-\sqrt{{b}^{2}+8a}}{4a}$(a<0).
而方程2a(f(x))2+bf(x)-1=0的△1=△>0,
∴此方程有两解且f(x)=x1或x2
即有0<x1<x2,f(x2)>0.
①把y=f(x)向下平移x2个单位即可得到y=f(x)-x2的图象,
∵f(x2)=x2,可知方程f(x)=x2有三解.
②把y=f(x)向下平移x1个单位即可得到y=f(x)-x1的图象,
∵f(x2)=x2,∴f(x2)-x1>0,可知方程f(x)=x1有两解.
综上①②可知:方程f(x)=x1或f(x)=x2共有5个实数解.
即关于x的方程2a(f(x))2+bf(x)-1=0的共有5不同实根.
故答案为:5.

点评 本题综合考查了利用导数研究函数得单调性、极值及方程解的个数、平移变换等基础知识,考查了图象平移的思想方法、推理能力、计算能力、分析问题和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax-1+lnx,其中a为常数.
(1)当a∈(-∞,-$\frac{1}{e}$)时,若f(x)在区间(0,e)上的最大值为-4,求a的值;
(2)当a=-$\frac{1}{e}$时,若函数g(x)=|f(x)|-$\frac{lnx}{x}$-$\frac{b}{2}$存在零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知三棱柱ABC-A1B1C1,AA1⊥平面ABC,底面ABC为正三角形,AA1=4,BC=2,延长AB至D,使BD=AB.
(1)求证:A1B∥平面B1CD;
(2)求二面角A-B1D-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知两条曲线的参数方程C1:$\left\{\begin{array}{l}{x=5cosθ}\\{y=5sinθ}\end{array}\right.$(θ为参数),C2:$\left\{\begin{array}{l}{x=4+tcos\frac{π}{4}}\\{y=3+tsin\frac{π}{4}}\end{array}\right.$(t为参数).
(1)判断这两条曲线的形状;
(2)求这两条曲线的交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?
(1)只有1名女生当选;
(2)两名队长当选;
(3)至少有1名队长当选;
(4)至多有2名女生当选;
(5)既要有队长,又要有女生当选.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知|$\overrightarrow{a}$|=|2$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=1,则向量$\overrightarrow{a}$在$\overrightarrow{b}$的方向上的投影为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.把an=4n-1中所有能被3或5整除的数删去,剩下的数自小到大排成一个数列{bn},则b2013=15091.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角∠A、∠B、∠C的对边分别为a、b、c,若$\overrightarrow{m}$=(b,$\sqrt{3}$cosB),$\overrightarrow{n}$=(sinA,-a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求∠B的大小;
(2)若b=3,sinC=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知椭圆C中心在原点,焦点在x轴上,F1,F2分别为左右焦点,椭圆的短轴长为2,过F2的直线与椭圆C交于A,B两点,三角形F1BF2面积的最大值为$\sqrt{{a}^{2}-1}$(a>1).
(Ⅰ)求椭圆C的方程(用a表示);
(Ⅱ)求三角形F1AB面积的最大值.

查看答案和解析>>

同步练习册答案