精英家教网 > 高中数学 > 题目详情

【题目】如图,在边长为2的正方形中,分别为的中点,的中点,沿将正方形折起,使重合于点,在构成的四面体中,下列结论错误的是

A. 平面

B. 直线与平面所成角的正切值为

C. 四面体的内切球表面积为

D. 异面直线所成角的余弦值为

【答案】C

【解析】

可判断;连接,则与平面所成的角,求出正切值可判断;设四面体内切球半径为,表面积为,体积为,利用求出半径可判断;取的中点,可得为异面直线所成角,求出余弦值可判断.

翻折前,,故翻折后,,
平面,故正确.

连接,则与平面所成的角,

的中点,

,又,,故正确.

设四面体内切球半径为,表面积为,体积为

,又因为

所以,内切球的表面积为错,

的中点,连接,则

为异面直线所成角,

,故正确,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=若函数f (x)的图象与直线yx有三个不同的公共点,则实数a的取值集合为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过长期观测得到:在交通繁忙的时段,某公路段的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间的函数关系为:.

1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?

2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(-,0),B(,0),直线MAMB交于点M,它们的斜率之积为常数m(m≠0),且△MAB的面积最大值为,设动点M的轨迹为曲线E.

(1)求曲线E的方程;

(2)过曲线E外一点QE的两条切线l1l2,若它们的斜率之积为-1,那么·是否为定值?若是,请求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述中正确的是( )

A. ,则的充分条件是

B. ,则的充要条件是

C. 命题的否定是

D. 是等比数列,则为单调递减数列的充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.

1)根据数据可知具有线性相关关系请建立关于的回归方程(系数精确到);

2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量, 则每位员工每日奖励100元; 则每位员工每日奖励150元; 则每位员工每日奖励200元.现已知该网站6月份日销量服从正态分布请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位)

参考数据 其中 分别为第个月的促销费用和产品销量 .

参考公式

1)对于一组数据 其回归方程的斜率和截距的最小二乘估计分别为 .

2)若随机变量服从正态分布 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在图所示的五面体中,面ABCD为直角梯形,,平面平面ABCD是边长为2的正三角形.

证明:平面ACF

若点P在线段EF上,且二面角的余弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an} 和等比数列{bn}满足a1b1=1,a2a4=10,b2b4a5.

(1)求{an}的通项公式;

(2)求和:b1b3b5+…+b2n-1.

查看答案和解析>>

同步练习册答案