如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=
,求三棱柱ABCA1B1C1的体积.
【解】(1)证明:
取AB的中点O,连接OC,OA1,A1B.
因为CA=CB,所以OC⊥AB.
由于AB=AA1,∠BAA1=60°,
故△AA1B为等边三角形,
所以OA1⊥AB.
因为OC∩OA1=O,所以AB⊥平面OA1C.
又A1C⊂平面OA1C,故AB⊥A1C.
(2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1=
.
又A1C=
,则A1C2=OC2+OA
,故OA1⊥OC.
因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABCA1B1C1的高.
又△ABC的面积S△ABC=
,故三棱柱ABCA1B1C1的体积V=S△ABC·OA1=3.
科目:高中数学 来源: 题型:
已知两条不同的直线m、n,两个不同的平面a、β,则下列命题中的真命题是( )
A.若m⊥a,n⊥β,a⊥β,则m⊥n
B.若m⊥a,n∥β,a⊥β,则m⊥n
C.若m∥a,n∥β,a∥β,则m∥n
D.若m∥a,n⊥β,a⊥β,则m∥n
查看答案和解析>>
科目:高中数学 来源: 题型:
已知点P在以
为圆心、半径为1的扇形区域AOB(含边界)内移动,
,E、F分别是OA、OB的中点,若
其中
,则
的最大值是( )
A. 4 B. 2 C.
D. 8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com