分析 (1)当n≥2时,a1=1,由an=$\frac{2{a}_{n-1}}{{a}_{n-1}+2}$,代入计算可得a2,a3,a4;
(2)利用数学归纳法证明即可.
解答 解:(1)当n≥2时,a1=1,由an=$\frac{2{a}_{n-1}}{{a}_{n-1}+2}$得
∴a2=$\frac{2}{3}$,a3=$\frac{1}{2}$,a4=$\frac{2}{5}$,
(2)猜想:an=$\frac{2}{n+1}$,
①当n=1时,猜想成立,
②假设当n=k时,猜想成立,即ak=$\frac{2}{k+1}$,
那么当n=k+1时,ak+1=$\frac{2{a}_{k}}{{a}_{k}+2}$=$\frac{2•\frac{2}{k+1}}{\frac{2}{k+1}+2}$=$\frac{2}{k+2}$,
∴当n=k+1时猜想成立,
由①②可得,对任意n∈N*,an=$\frac{2}{n+1}$都成立.
点评 本题考查数列递推式,以及数学归纳法,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | -2或3 | D. | -1或3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com