精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为π.
(Ⅰ)求ω的值及其f(x)的单调递增区间;
(Ⅱ)若x∈[0,$\frac{π}{2}$],求函数f(x)的最大值和最小值.

分析 (Ⅰ)利用正弦函数的周期性求得ω,再利用正弦函数的单调性,得出结论.
(Ⅱ)由条件利用正弦函数的单调性、最值,得出结论.

解答 解:(Ⅰ)因为函数$f(x)=\sqrt{2}sin(ωx+\frac{π}{4})$(ω>0)的最小正周期为π∴$T=\frac{2π}{ω}=π⇒ω=2$.
由$2kπ-\frac{π}{2}≤2x+\frac{π}{4}≤2kπ+\frac{π}{2}$,解得$kπ-\frac{3π}{8}≤x≤kπ+\frac{π}{8},k∈Z$,
所以函数f(x)的单调递增区间为$[kπ-\frac{3π}{8},kπ+\frac{π}{8}]k∈Z$.
(Ⅱ)∵$0≤x≤\frac{π}{2}$,∴$\frac{π}{4}≤2x+\frac{π}{4}≤\frac{5π}{4}$,
∴当$2x+\frac{π}{4}=\frac{π}{2}$,即$x=\frac{π}{8}$时,函数f(x)取得最大值$\sqrt{2}$,
当$2x+\frac{π}{4}=\frac{5π}{4}$,即$x=\frac{π}{2}$时,函数f(x)取得最小值$\sqrt{2}×(-\frac{{\sqrt{2}}}{2})=-1$.

点评 本题主要考查正弦函数的周期性和单调性、最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列各式正确的是(  )
A.|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|B.($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{{a}^{2}}$•$\overrightarrow{{b}^{2}}$C.若$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$)则$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$D.若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$则$\overrightarrow{b}$=$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=4,前n项和为Sn,且Sn+1-3Sn-2n-4=0(n∈N+
(1)证明数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)设函数f(x)=anx+an-1x2+…+a1xn,f′(x)是函数f(x)的导函数,求f′(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.化简sin275°-cos275°的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.1C.-$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(x,4),若$\overrightarrow a$∥$\overrightarrow b$,则实数x的值为(  )
A.8B.2C.-2D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.曲线f(x)=$\frac{1nx}{x}$在x=e处的切线方程为(  )
A.y=$\frac{1}{e}$B.y=eC.y=xD.y=x-e+$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列叙述错误的是(  )
A.频率是随机的,在试验前不能确定,随着试验次数的增加,频率一定会越来越接近概率
B.有甲乙两种报纸可供某人订阅,事件B:”至少订一种报”与事件C:“至多订一种报”是对立事件
C.互斥事件不一定是对立事件,但是对立事件一定是互斥事件
D.从区间(-10,10)内任取一个整数,求取到大于1且小于5的概率模型是几何概型

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数y=f(x)的定义域为R,当x>0时,有f(x)>1,且对任意x,y∈R,有f(x+y)=f(x)f(y).
(1)求证:f(x)在R上单调递增;
(2)解不等式f(x)≤$\frac{1}{f(x+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.4张卡片上分别写有数字1,1,2,2,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字不相等的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案