精英家教网 > 高中数学 > 题目详情
3.化简sin275°-cos275°的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.1C.-$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 利用二倍角公式,诱导公式,特殊角的三角函数值即可化简得解.

解答 解:sin275°-cos275°=$-cos(2×{75°})=cos{30°}=\frac{{\sqrt{3}}}{2}$.
故选:A.

点评 本题主要考查了二倍角公式,诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若2弧度的圆心角所夹的扇形的面积是4cm2,则该圆心角所对的弧长为(  )
A.2πcmB.2cmC.4πcmD.4cm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在我国南宋数学家杨辉所著的《详解》(1261年)一书中,用如图(1)的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士•帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”( Chinese triangle)如图(1),17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图(2).在杨辉三角中相邻两行满足关系式:Cnr+Cnr+1=Cn+1r+1,其中n是行数,r∈N.请类比上式,在莱布尼兹三角中相邻两行满足的关系式是$\frac{1}{{C_{n+1}^1C_n^r}}=\frac{1}{{C_{n+2}^1C_{n+1}^r}}+\frac{1}{{C_{n+2}^1C_{n+1}^{r+1}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b均为正数,且a+b=1,则$\frac{4}{a}$+$\frac{9}{b}$的最小值为(  )
A.24B.25C.26D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.类比a(b+c)=ab+ac得到下列结论:
①lg(a+b)=lga+lgb;
②sin(α+β)=sinα+sinβ;
③$\overrightarrow{a}$•($\overrightarrow{b}$+$\overrightarrow{c}$)=$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{a}$•$\overrightarrow{c}$;
④A∩(B∪C)=(A∩B)∪(A∩C)
以上结论全部正确的选项是(  )
A.①②③④B.③④C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知|${\overrightarrow a}$|=$\sqrt{5}$,$\overrightarrow b$=(1,2),且$\overrightarrow a$⊥$\overrightarrow b$,则$\overrightarrow a$的坐标为(  )
A.(-2,-1)或(2,1)B.(-6,3)C.(1,2)D.(2,-1)或(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为π.
(Ⅰ)求ω的值及其f(x)的单调递增区间;
(Ⅱ)若x∈[0,$\frac{π}{2}$],求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设向量$\overrightarrow{a}$=(4cosα,sinα),$\overrightarrow{b}$=(sinβ,4cosβ),$\overrightarrow{c}$=(cosβ,-4sinβ)
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$-2$\overrightarrow{c}$垂直,求tan(α+β)的值;
(2)若β∈(-$\frac{π}{12},\frac{5π}{12}$],求|$\overrightarrow{b}+\overrightarrow{c}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设p:(3x2+ln3)′=6x+3;q:(3-x2)ex的单调增区间是(-3,1),则下列复合命题的真假是(  )
A.“p∨q”假B.“p∧q”真C.“¬q”真D.p∨q真

查看答案和解析>>

同步练习册答案