精英家教网 > 高中数学 > 题目详情
13.如图,BC是圆O的一条弦,延长BC至点E,使得BC=2CE=2,过E作圆O的切线,A为切点,∠BAC的平分线AD交BC于点D,则DE的长为$\sqrt{3}$.

分析 利用切线的性质、角平分线的性质,证明∠ADE=∠DAE,可得AE=DE,再利用切割线定理,即可求出DE的长.

解答 解:∵AE是圆O的切线,
∴∠EAC=∠B,
又∵AD是∠BAC的平分线,∴∠BAD=∠DAC.
∴∠ADE=∠DAE,
∴AE=DE,
∵BC=2CE=2,AE是圆O的切线,
∴AE2=CE•BE=3,
∴AE=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查切线的性质、角平分线的性质,考查切割线定理,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(1)求证:CD⊥平面CPAC;
(2)如果N是棱AB上一点,且直线CN与平面MAB所E,F成角的正弦值为$\frac{{\sqrt{10}}}{5}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图是某直三棱柱(侧棱与底面垂直的三棱柱)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)若N是BC的中点,求证:AN∥平面CME;
(2)求证:平面BDE⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB=5,AC=4,BC=3,AA1=4,点D在AB上.
(1)若D是AB中点,求证:AC1∥平面B1CD;
(2)当$\frac{BD}{AB}$=$\frac{1}{5}$时,求三棱锥B-CDB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x2-2x-3|,x∈R.
(1)直线y=m与y=f(x)的图象从左到右依次有4个交点A、B、C、D,若线段AB、BC、CD能构成三角形,求m的取值范围;
(2)当函数f(x)的定义域为[a,b]时,值域恰好为[$\frac{5}{3}$(a-1),$\frac{5}{3}$(b-1)],求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正四棱锥S-ABCD的底面边长为4cm,侧棱长为8cm,求棱锥的高SO,斜高SE.(作图)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,△ABC中,∠ACB=90°,D是AC上一点,以AD为直径作⊙O交AB于点G
(1)证明:B、C、D、G四点共圆
(2)过点C作⊙O的切线CP,切点为P,连接OP,作PH⊥AD于H,若CH=$\frac{16}{5}$,OH=$\frac{9}{5}$,求CD•CA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知${C}_{n}^{m}$+${C}_{m+1}^{n}$+${A}_{n}^{m}$=6,则m=2,n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图:在长方体ABCD-A1B1C1D1中,AB=2,BC=4,BB1=4,E是CD的中点,F是A1D1的中点.
(1)求异面直线AB1,BF所成角的余弦值,
(2)求三棱锥E-AB1D的体积.

查看答案和解析>>

同步练习册答案