精英家教网 > 高中数学 > 题目详情
已知sinα=
3
5
,且α是第二象限角,则cosα=
 
,tanα=
 
考点:同角三角函数间的基本关系
专题:三角函数的求值
分析:利用同角三角函数基本关系式即可得出.
解答: 解:∵sinα=
3
5
,且α是第二象限角,
则cosα=-
1-sin2α
=-
4
5
,tanα=
sinα
cosα
=-
3
4

故答案分别为:-
4
5
;-
3
4
点评:本题考查了同角三角函数基本关系式,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=9x+3x+1+1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x是a与b的等差中项,x2是a2与-b2的等差中项,则a,b的关系是(  )
A、a=-b
B、a=3b
C、a=-b或a=3b
D、a=b=0

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足an=
2an,0≤an≤1
an-1,an>1
,且a1=
6
7
,求a2014的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=xsinx+cosx,求y′|x=π

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论能成立的是(  )
A、sinα=
1
2
且cosα=
1
2
B、tanα=2且
cosα
sinα
=
1
3
C、tanα=1且cosα=
2
2
D、sinα=1且tanα•cosα=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
sin2x
+
4
cos2x
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(Ⅰ)证明:BE⊥DC;
(Ⅱ)求BE的长;
(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,SA⊥平面ABC,AB⊥AC.
(Ⅰ)求证:AB⊥SC;
(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;
(Ⅲ)若SA=AB=2,AC=4,求二面角A-FD-G的余弦值.

查看答案和解析>>

同步练习册答案