精英家教网 > 高中数学 > 题目详情
17.已知$cos({θ+π})=-\frac{1}{4}$,则$sin({2θ+\frac{π}{2}})$=$-\frac{7}{8}$.

分析 根据诱导公式和二倍角公式即可求出答案.

解答 解:∵cos(θ+π)=-$\frac{1}{4}$,
∴cosθ=$\frac{1}{4}$,
∴sin(2θ+$\frac{π}{2}$)=cos2θ=2cos2θ-1=$\frac{1}{8}$-1=-$\frac{7}{8}$.
故答案为:-$\frac{7}{8}$.

点评 本题考查了诱导公式和二倍角公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知$α∈({0\;,\;\;\frac{π}{2}})\;,\;\;sinα=\frac{{\sqrt{5}}}{5}$.
(1)求$sin({α+\frac{π}{4}})$的值;
(2)求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G为BC的中点.
(Ⅰ)求证:FG∥平面BED;
(Ⅱ)求证:平面BED⊥平面AED;
(Ⅲ)求直线EF与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=0.3${\;}^{2-x-{x}^{2}}$的定义域为R;单调递增区间[-$\frac{1}{2}$,+∞);值域[$0.{3}^{\frac{9}{4}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知tanα=$\sqrt{3,}$α∈(0,π),则sinα=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$C:\frac{x^2}{12}+\frac{y^2}{3}=1$,直线l与椭圆C交于A,B两点,且线段AB的中点为M(-2,1),则直线l的斜率为(  )
A.$\frac{1}{3}$B.$\frac{3}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ln(1+x),x∈[0,+∞),f'(x)是f(x)的导函数.设g(x)=f(x)-axf'(x)(a为常数),求函数g(x)在[0,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果正数a,b满足a+b=5,则$\frac{1}{a+1}+\frac{1}{b+2}$的最小值为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2|x|,记a=f(log0.53),b=log25,c=f(0),则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案