精英家教网 > 高中数学 > 题目详情
15.已知$sin(x+\frac{π}{6})=\frac{1}{3}$,则$sin(x-\frac{5π}{6})+{sin^2}(\frac{π}{3}-x)$的值是$\frac{5}{9}$.

分析 由条件利用诱导公式,同角三角的基本关系,化简要求的式子可得结果.

解答 解:∵已知$sin(x+\frac{π}{6})=\frac{1}{3}$,则$sin(x-\frac{5π}{6})+{sin^2}(\frac{π}{3}-x)$=-sin(x+$\frac{π}{6}$)+${cos}^{2}(x+\frac{π}{6})$
=-sin(x+$\frac{π}{6}$)+1-${sin}^{2}(x+\frac{π}{6})$=-$\frac{1}{3}$+1-$\frac{1}{9}$=$\frac{5}{9}$,
故答案为:$\frac{5}{9}$.

点评 本题主要考查诱导公式,同角三角的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.坐标平面上的点集S满足S=$\{(x,y)|{log_2}({y^2}-y+2)=2{sin^4}x+2{cos^4}x,-\frac{π}{8}≤x≤\frac{π}{4}\}$,将点集S中的所有点向y轴作投影,所得投影线段的总长度为(  )
A.1B.$\frac{{\sqrt{3}+\sqrt{5}}}{2}$C.$\sqrt{8\sqrt{2}-7}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1,左焦点为F2,若椭圆上存在一点P,满足线段PF1相切于椭圆的短轴为直径的圆,切点为线段PF1的中点,则该椭圆的离心率为$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在数列{an}中,an+1-an=2,Sn为{an}的前n项和.若S9=90,则a1=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(0,t2+1),则当$t∈[-\sqrt{3},2]$时,|$\overrightarrow{a}$-t$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$|的取值范围是[1,$\sqrt{13}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知${(x-\frac{1}{x})^n}$的展开式中第3项与第6项的二项式系数相等,则展开式中系数最大的项为第(  )项.
A.5B.4C.4或5D.5或6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,点D在BC边上,已知cos∠CAD=$\frac{2\sqrt{5}}{5}$,cos∠C=$\frac{3\sqrt{10}}{10}$.
(1)求∠ADC;
(2)若$AB=\sqrt{10},CD=6$,求BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设全集U=R,集合A={x|1<x≤3},B={x|x≥2},则A∩B={x|2≤x≤3,A∪B={x|x>1},A∩(∁RB)={x|1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若点M(3,1)、N(-1,3)均在直线ax-y+2=0的同一侧,则实数a的取值范围是(  )
A.$(-1,-\frac{1}{3})$B.$(\frac{1}{3},1)$C.$(-∞,-1)∪(-\frac{1}{3},+∞)$D.$(-∞,\frac{1}{3})∪(1,+∞)$

查看答案和解析>>

同步练习册答案