精英家教网 > 高中数学 > 题目详情
15.方程2x=x+1的解的个数为(  )
A.0个B.1个C.2个D.3个

分析 根据函数与方程之间的关系转化为两个函数的交点个数进行求解即可.

解答 解:设f(x)=2x,g(x)=x+1,
作出两个函数的图象如图,
由图象知两个函数有两个交点,
即方程程2x=x+1的解的个数2个,
故选:C

点评 本题主要考查方程根的个数的判断,根据函数与方程之间的关系转化为两个函数的交点个数问题,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设数列{an}的前n项和为Sn,a1=2,若Sn+1=$\frac{n+2}{n}$Sn,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前2016项和为$\frac{504}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a>0,若方程$\frac{a}{x-a}$=$\sqrt{4ax-2{x}^{2}}$有实数解,则实数a的取值范围为[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.5名同学参加庆祝抗日胜利70周年文艺演出,要求是甲乙必须相邻,而丙丁不能相邻,不同的排队方法的种数是(  )
A.48B.24C.20D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求证:对任何实数x,y,z,下述三个不等式不可能同时成立:
①|x|<|y-z|
②|y|<|z-x|
③|z|<|x-y|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.观察如图所示的算法框图
(1)说明该算法框图所表示的函数;
(2)用基本语句描述该算法框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若存在实数x0,使f(x0)=x0成立,则称x0为函数f(x)的不动点.己知函数f(x)=x3+ax2+x+b的图象关于点(p,0)对称,p>0,证明:“f(x)恰有一个零点”是“f(x)恰有一个不动点”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x||x-1|≤a,a>0},B={x|x2-6x-7>0},且A∩B=∅,则a的取值范围是0<a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{2^x},(x<1)\\ f(x-1),(x≥1)\end{array}$,则f(log29)的值为(  )
A.9B.$\frac{9}{2}$C.$\frac{9}{4}$D.$\frac{9}{8}$

查看答案和解析>>

同步练习册答案