精英家教网 > 高中数学 > 题目详情
15.以下命题:①以直角梯形的一腰为轴旋转一周所得的旋转体是圆台.②有一个面是多边形,其余各面都是三角形的多面体叫棱锥③一个平面截圆锥得到一个圆锥和一个圆台,其中正确命题的个数为(  )
A.0B.1C.2D.3

分析 ①根据圆台的几何特征可以判断①的真假;
②根据多面体的性质和几何体的定义来判断,采用举反例的方法来以及对概念的理解进行否定②
③根据圆台的几何特征可以判断③的真假;进而得到答案.

解答 解:对于①,以直角梯形的一斜腰为轴旋转一周所得的旋转体不是圆台,故①错误;
对于②,用一个平行于底面的平面去截棱锥,底面与截面之间的部分叫棱台,故②错误;
对于③,一个平行与底面平面截圆锥,得到一个圆锥和一个圆台,当截面与底面不平行时,得到的两个几何体不是圆锥和圆台,故③错误;
其中正确命题的个数为0个,
故选:A.

点评 本题考查命题真假的判断,考查学生分析解决问题的能力,准确理解几何体的定义,把握几何体结构特征是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.记a=sin(cos2015°),b=sin(sin2015°),c=cos(sin2015°),d=cos(cos2015°),则a、b、c、d中最大的是(  )
A.aB.bC.cD.d

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a=${∫}_{0}^{π}$(cosx-sinx)dx,则二项式(x2+$\frac{a}{x}$)6展开式中不含x6项的系数和是161.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若将锐角A为60°,边长为a的菱形ABCD沿对角线BD折成60°的二面角,则A与C之间的距离为$\frac{\sqrt{3}}{2}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知cos(π+α)=$\frac{3}{5}$,且α为第三象限的角,求sinα+tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知实数x、y满足$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤m}\end{array}\right.$,如果目标函数z=x-y的最小值为-1,则m=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,动点P满足$\overrightarrow{CA}$2=$\overrightarrow{CB}$2-2$\overrightarrow{AB}$•$\overrightarrow{CP}$,则动点P轨迹一定通过三角形ABC的外心(“外心”、“内心”、“重心”或“垂心”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知关于变量x的函数f(x)=ln(x2-x+m)-$\sqrt{x-m}$,其定义域为A,若2∈A,则实数m的取值范围是-2<m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a<0,e为自然对数的底数.
(Ⅰ)求f(x)在x∈[0,2]上的最小值;
(Ⅱ)试探究能否存在区间M,使得f(x)和g(x)在区间M上具有相同的单调性?若能存在,说明区间M的特点,并指出f(x)和g(x)在区间M上的单调性;若不能存在,请说明理由.

查看答案和解析>>

同步练习册答案