精英家教网 > 高中数学 > 题目详情
定点A(-1,-
3
)在定圆x2+y2=4上,且A对于动弦BC的张角为30°,求△ABC面积最大值与此时B,C的坐标.
考点:直线与圆相交的性质
专题:计算题,解三角形
分析:根据正弦定理,结合三角形的面积公式进行化简,求出三角形面积最大的条件,然后根据角之间的关系,求出直线OB,OC的倾斜角,即可得到结论.
解答: 解:x2+y2=4,R=2,∠BAC=30°,B+C=150°
AB=2RsinC=4sinC,AC=4sinB
三角形ABC的面积
=
1
2
AB•AC•sin∠BAC
=
1
2
×
4sinC•4sinB•sin30°
=4sinC•sinB
=-2[cos(B+C)-cos(B-C)]
=-2[cos150°-cos(B-C)]
=-2[-
3
2
-cos(B-C)]
=
3
+2cos(B-C)
∴当∠B=∠C时,cos(B-C)=2,
∵∠BAC=30°,
∴∠B=∠C=75°,
此时三角形ABC的面积的最大值为2+
3

此时BC=2RsinA=4×
1
2
=2

则∵A(-1,-
3
),
∴直线AO的效率k=
3
,即∠DOx=60°,
∵OB=OC=BC=2,
∴∠BOC=60°,∴∠DOC=30°
即∠COx=60°-30°=30°,
∴直线OC的倾斜角为30°,直线OB的倾斜角为60°+30°=90°,
∴C点的坐标为(2cos30°,2sin30°),即(
3
,1
),
B点的坐标为(0,2).
点评:本题主要考查正弦定理的应用,考查学生的计算能力.根据条件求出直线OB,OC的倾斜角是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

各项均为正数的等比数列{an}中,2a1+a2=a3,则
a4+a5
a3+a4
的值为(  )
A、-1B、-1或2C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

PA,PC分别切⊙O于A,C,AB是⊙O的直径,CD⊥AB于D,PB交CD于E,求证:ED=EC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,正三棱锥P-ABC中,底面ABC的边长为2,正三棱锥P-ABC的体积为V=1,M为线段BC的中点,求直线PM与平面ABC所成的角(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,点E为边AD上的点,点F为边CD的中点,AB=AE=
2
3
AD
,现将△ABE沿BE边折至△PBE位置,且平面PBE⊥平面BCDE.
(Ⅰ) 求证:平面PBE⊥平面PEF;
(Ⅱ) 求二面角E-PF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线 x2=y,直线L经过点A(-1,2)但不经过点B(1,1),与抛物线交于M,N两点,点M的横坐标大于1,直线L的斜率为k,直线BN,BM的斜率分别为k1,k2
(1)当AB垂直于直线L时,求 k1.k2的值.
(2)设△BAM和△BAN的面积分别为S1,S2,当k≤1时,求
S1
S2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面△ABC是边长为a的正三角形,侧棱长为
2
2
a
,点D在棱A1C1上.
(1)若A1D=DC1,求证:直线BC1∥平面AB1D;
(2)求AB1与侧面BCC1B1所成角的大小;
(3)请在棱A1C1确定点D的位置,使二面角A1-AB1-D的平面角为
π
4
,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=ax(ax-3a2-1)(a>0且a≠0)在区间[0,+∞)单调递增,那么实数a的取值范围是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体P-ABC中,PA⊥平面ABC,AB⊥BC,PA=2,AC=2
2
.AB=
2
.D为PA的中点,M为CD的中点,N为PB上一点,且PN=3BN.
(Ⅰ)求证:MN⊥PA;
(Ⅱ)求二面角B-CD-A的大小.

查看答案和解析>>

同步练习册答案