精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=(x2-x+1)ex,g(x)=x2-bx+9(b∈R),若对任意x1∈R,存在x2∈[1,3],使f(x1)>g(x2)成立,则实数b的取值范围是[6,+∞).

分析 问题转化为f(x1min>g(x2min成立,根据函数的单调性分别求出函数g(x)的最小值和f(x)的最小值,得到关于b的不等式,解出即可.

解答 解:f(x)=(x2-x+1)ex
f′(x)=(x2+x)ex
令f′(x)>0,解得:x>0或x<-1,
令f′(x)<0,解得:-1<x<0,
故f(x)在(-∞,-1)递增,在(-1,0)递减,在(0,+∞)递增,
故x→-∞时,f(x)→0,
若对任意x1∈R,存在x2∈[1,3],使f(x1)>g(x2)成立,
只需g(x)min≤0在[1,3]成立,
g(x)的对称轴是x=$\frac{b}{2}$,
$\frac{b}{2}$≤1时,g(x)在[1,3]递增,g(x)min=g(1)=10-b≤0,无解,
1<$\frac{b}{2}$<3时,g(x)min=g($\frac{b}{2}$)=$\frac{{b}^{2}}{4}$-$\frac{{b}^{2}}{2}$+9≤0,无解,
$\frac{b}{2}$≥3时,g(x)min=g(3)=18-3b≤0,解得:b≥6,
故答案为:[6,+∞).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知椭圆的标准方程为$\frac{x^2}{5}+\frac{y^2}{4}=1$,F1,F2为椭圆的左右焦点,O为原点,P是椭圆在第一象限的点,则$\frac{{|{P{F_1}}|-|{P{F_2}}|}}{{|{PO}|}}$的取值范围(  )
A.$({0,\frac{{\sqrt{5}}}{5}})$B.$({0,\frac{{2\sqrt{5}}}{5}})$C.$({0,\frac{{3\sqrt{5}}}{5}})$D.$({0,\frac{{6\sqrt{5}}}{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.全集U={0,1,3,5,6,8},集合A={ 1,5,8 },B={2},则集合(∁UA)∪B=(  )
A.{0,2,3,6}B.{ 0,3,6}C.{2,1,5,8}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中正确的是(  )
A.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$B.若|$\overrightarrow{a}$|=1,则$\overrightarrow{a}$=1C.若|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$D.若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{a}$∥$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a>b>0,则下列不等式一定不成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.log2a>log2bC.a2+b2≤2a+2b-2D.b<$\sqrt{ab}$<$\frac{a+b}{2}$<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是B1B,BC的中点,
(1)证明:EF∥A1D;
(2)证明:A1E,AB,DF三线共点;
(3)问:线段CD上是否存在一点G,使得直线FG与平面A1EC1所成角的正弦值为$\frac{{\sqrt{3}}}{3}$,若存在,请指出点G的位置,说明理由;若没有,也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个结论:①若x>0,则x>sinx恒成立;
②命题“若x-sinx=0则x=0”的逆命题为“若x≠0,则x-sinx≠0”
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④命题“?x∈R+,x-lnx>0”的否定是“$?{x_0}∈{R^+},{x_0}-ln{x_0}≤0$”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足xy+1=4x+y(x>1),则(x+1)(y+2)的最小值为27,此时x+y=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于函数y=f(x),若存在开区间D,同时满足:
①存在a∈D,当x<a时,函数f(x)单调递减,当x>a时,函数f(x)单调递增;
②对任意x>0,只要a-x,a+x∈D,都有f(a-x)>f(a+x),则称y=f(x)为D内的“勾函数”.
(1)证明:函数y=|lnx|为(0,+∞)内的“勾函数”.
(2)对于给定常数λ,是否存在m,使函数h(x)=$\frac{1}{3}$λx3-$\frac{1}{2}$λ2x2-2λ3x+1在(m,+∞)内为“勾函数”?若存在,试求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案